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Dear reader, 
It is with great excitement that we present here the first edition 

of  the Anne Arundel Community College Journal of  Emerging 

Scholarship. The goal of  this journal is to provide an outlet for 

peer-reviewed publication of  collegiate undergraduate student re- 

search. The multidisciplinary approach of  this endeavor is to 

reach as broad of  an audience as possible and help students devel-

op critical skills of  scientific inquiry. 

While we hope that our transfer-bound students who begin 

research projects at AACC will be inspired to continue this path 

at four-year institutions, all AACC students benefit from the skills 

gained by engaging in research. In addition to developing techni-

cal skills specific to a particular field of  study, engaging in research 

develops other skills which are widely in demand by nearly all in-

dustry employers, such as effective team collaboration, writing, 

presentation, analysis, and critical thinking. Participation in re-

search also fosters information literacy and helps students become 

critical consumers of  the data they encounter in their daily lives. 

We want to extend gratitude to the students, mentors, review-

ers, and partners who have dedicated countless hours to creating 

the original work contained within this volume.

Sincerely, 

The 2021–2022 Editorial Board
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 Jason Burkholder, B.S.

Evaluating the Utility 
of Enterococcus 
Specific Primers
Abstract

Enterococci are the preferred fecal indicator bacteria (FIB) for 

monitoring the safety of  recreational beaches. A reliable and 

cost-effective method to identify the species of  origin for entero-

cocci-contaminated rivers is essential for decreasing the risk to 

human health. In this study human and canine fecal samples were 

analyzed in polymerase chain reaction (PCR) studies with primers 

reported to amplify targets specific to enterococcal species with the 

goal of  identifying the fecal source. While the primers successfully 

amplified the target sequences in many samples, amplification in 

non-target species made identifying one, or a small set of  prim-

ers, that reliably discriminate between fecal source species more 

challenging. Alignment and comparison of  PCR product se-

quences were conducted with the goal of  designing novel primers 

with increased specificity. Analysis of  multi-locus sequence typing 

(MLST) data suggested that specific nucleotide variations within 

loci found in species-specific enterococcal strains might be exploit-

ed to determine the source of  contamination in local waterways. 

To this end, primers for two target loci were designed specifical-

ly for nucleotide sequences more frequently isolated from canine 

enterococcal samples and initial screening assays were conduct-

ed to optimize conditions and discriminate between source DNA 

without success. Collection of  additional species-specific bacterial 

samples and additional control type strains are needed to better 

distinguish between the species of  interest in this study. 
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Introduction

Contamination of  recreational waters with bacteria from fecal 

contamination poses a significant health risk to humans (Cabelli et 

al. 1979). Increasing water temperatures driven by climate change, 

increased incidence and severity of  rain events bringing more 

runoff, larger impervious surfaces resulting in less absorption of  

runoff before entering waterways, and the aging sewer infrastruc-

ture, all contribute to more frequent occurrences of  beach closures 

due to high bacterial concentrations (Rose et al. 2001). To develop 

programs that decrease contamination and to better understand 

the risk to humans, it is essential to not only quantify the bacterial 

load in water, but to identify the relative contribution from differ-

ent contributing species. 

Enterococcus sp. are prevalent in bird, mammal and to some 

extent, insect and reptile fecal material, and comprise approxi-

mately 1% of  the bacteria in the human large intestine (Dubin 

and Pamer, 2014). Other species contain a similarly complex and 

varied array of  bacteria (Layton et al. 2010; Harwood et al. 2014). 

The correlation between levels of  fecal bacteria and illness 

in humans has long been recognized, and the EPA has identified 

enterococci as fecal indicator bacteria (FIB), the measurement of  

which are used to determine the safety of  recreational swimming 

beaches and seafood harvesting waters (Cabelli et al. 1979; US 

EPA, 2012). High levels in recreational waters can result in beach 

closures and halt fish and oyster harvests. The standard method 

for tracking FIB levels utilizes selective media and direct colony 

counting (US EPA, 2009). Monitoring for all possible pathogens 

that may be in contaminated water is an impossibility, so the use 

of  FIB has made it possible to track a common set of  organisms, 

compare many locations and set thresholds for safety (Leclerc et 

al. 2001). 

Microbial source tracking (MST) has previously been used 

to identify the source of  enterococci and other bacteria associated 
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with fecal contamination found in environmental waters (Leclerc 

et al. 2004) and has been used to identify the source in bacterial in-

fection outbreaks from sources including food and water (McRobb 

et al 2015). Identification of  the contamination source is neces-

sary for developing plans to eliminate the source, such as repairing 

leaks, upgrading septic systems and educating the public on pet 

waste clean-up. MST methods, such as restriction analysis, quanti-

tative polymerase chain reaction (qPCR), and DNA sequencing of  

one or several loci, have been used with varying success (Foley et 

al. 2009; Homan et al. 2002; Ruiz-Garbajosa, 2006). Polymerase 

chain reaction (PCR) potentially provides an inexpensive way to 

identify the source of  fecal contamination. Many target organisms 

have been proposed for PCR-based MST (Harwood et al. 2014). 

However, methods that target species other than Enterococcus re-

quire processing of  the sample without initially quantifying the 

level of  contamination, adding cost and wasted effort. A method 

that first screens for enterococcal contamination followed by MST, 

would be more efficient. To this end a project was initiated to iden-

tify or design primer sets that discriminate between fecal source 

species responsible for Enterococcus contamination.

Methods

Fecal sample collection
Canine fecal samples were obtained from local veterinarians (D 

samples) and dog owners (S samples). Each D sample contained 

fecal matter combined from 4 to 10 dogs (n=17). Individual hu-

man samples were obtained from anonymous volunteers (n=3; 

P002, P003, P004), and sewage samples were provided by several 

Anne Arundel County Water Reclamation Facilities (WRF) (n=8). 

Enterococcus faecalis NCTC 775, a positive control for Enterococcus fae-
calis-specific primers, was obtained from Biomerieux. Enterococcus 
faecium 700221, a positive control for E. faecium-specific primers, was 

obtained from American Type Culture Collection. Environmental 
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samples were collected from local waterways that contained high 

concentrations of  enterococci (over 1000 bacteria/100 mL, ap-

proximately 10 times above the acceptable threshold).

Enterococcus isolation and genomic DNA isolation
Approximately 1 mL of  liquid WRF influent or 0.1 mg of  fecal 

matter suspended in sterile water and passed through a sterile 

0.45-micron filter. Filters were placed on mE agar (Difco) selecting 

for Enterococcus sp. After incubation at 41 degrees Celsius for 24 

hours, colonies with a blue halo were scraped, combined and sus-

pended in sterile water. The Amresco Cyclo-Prep Genomic DNA 

Isolation kit was used for all DNA extractions (Avantor). 

Primer selection and Polymerase Chain  
Reaction conditions
The primers chosen, their reported specificity and references are 

shown (Table 1). Primers were purchased from Integrated DNA 

Technologies (Coralville, USA).

Amplification reactions included 1 unit of  Taq polymerase 

(New England Biolabs), 1X buffer, 300 nM dNTPs, 1.5 mM 

MgCl2, 1mM forward primer, 1mM reverse primer, 2 µl of  the 

Table 1

Primer target and specificity.
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template in a final volume of  50 µl. Samples were placed in a ther-

mocycler and run for 30 cycles. Each cycle incubated samples for 

60 sec at 94°C, 60 sec at an annealing temperature specific for a 

given primer set (Table 2), and 60 sec at 74°C.

Analysis of PCR products
Aliquots of  reactions were analyzed on 1.5% agarose alongside 

a 100 base pair standard (Amresco EZ-vision) and stained with 

ethidium bromide to estimate amplification product size. Samples 

that resulted in amplification of  a product of  the expected size 

were classified as positives. A sample agarose gel in Figure 1 high-

lights the expected product sizes. Samples that did not result in 

amplification, therefore no band on the agarose gel, were classi-

fied as negatives, and those with multiple bands were placed into 

a separate group. Once samples were verified they were sent out 

to Genewiz for sequencing to further verify that target sequences 

were amplified and to compare sequences.

Table 2

Primer sequences, conditions 
and predicted product size.

Figure 1

Agarose gel illustrating expected amplification product sizes. Each reaction 
contained Enterococcus faecium strain 700221 genomic template with a 
different primer set: 1-Esp (680 bp); 2-CIUM (512 bp); 3-ENT376 
(220 bp); 4-IS16 (547 bp); 5-VanA (1029bp).
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Analysis of MLST
MLST is a technique introduced in the early 1990s utilizing a 

limited number of  short sequences from several loci within bac-

terial genomes capable of  assigning a sample to a specific strain 

(Maiden et al. 1998). Sequence data from the Public Database for 

Molecular Typing and Microbial Genomic Diversity (pubMLST) 

suggested that specific nucleotide variations within loci found in all 

enterococcal strains might be exploited to determine the source of  

enterococci in contaminated local waterways. The MLST strain 

typing method typically employs sequence comparisons at seven 

loci to assign a sample to a specific strain. In database searches of  

sequences from many sources, it was found that the sequences of  

two loci, psts and atpa, were aligned and compared, and primers 

were designed specifically for nucleotide sequences more frequent-

ly isolated from canine enterococcal samples. Sequences in the 

database were aligned to look for individual nucleotide differences 

prevalent between loci amplified from bacteria from different host 

species. The analysis was performed in Ugene (Okonechnikov et 

al. 2012). 

Results 

PCR results
Amplification results from assays performed to evaluate species se-

lectivity of  primer sets were promising. Type strain controls, E. 
faecalis NCTC775 and E. faecium 700221, performed as expect-

ed with each primer set (Table 3). NCTC775 is a non-virulent 

strain that does not contain the esp gene, while E. faecium 700221 is 

known to contain both the esp and IS16 locus. The number of  bac-

terial DNA samples from individuals was very small in this study 

(n=3), and none of  the samples obtained were from clinical set-

tings. Two of  the three samples showed amplification with ENT, 

ENT376 and CIUM primers, as would be expected.

Sewage samples collected from waste reclamation facilities 



Evaluating the Utility of Enterococcus Specific Primers  9

around Anne Arundel County contain fecal matter from large 

populations, so reflect the complexity of  bacterial populations in 

humans. One sewage sample, PAT, was negative for amplifica-

tion by the ENT376 primer set, although those primers are the 

most inclusive, reported to amplify sequences from a variety of  

Enterococcus species. The sequence targets associated with poten-

tially more virulent enterococcal species, esp and IS16, were found 

in 57% and 86% of  sewage samples, respectively (Table 3). 

The amplification results with bacterial DNA from dog fecal 

samples, representing over 35 individual dogs, were encouraging 

Table 3

Summary of  PCR Results. 
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for several reasons. All of  the samples from dog fecal material suc-

cessfully amplified the ENT376 target, confirming the reports that 

ENT376 is the least selective of  the primer sets used. Over 88% 

of  the samples from dogs were positive for the E. faecium target 

(CIUM primer set), while only 69% were positive for E. faecalis 
(ENT primer set). Of  note, only 13% of  the samples obtained 

from dog feces were positive for the presence of  the esp gene, and 

29% were positive for IS16. 

Environmental samples collected from area waterways on 

days associated with high concentrations of  Enterococcus sp. were 

analyzed and compared to look for patterns that might suggest the 

species responsible for the contamination. Six of  the seven samples 

were positive for amplification with ENT376, suggesting the pres-

ence of  at least one species of  Enterococcus. The two CG samples, 

CG and CG2, were collected on different days. Both were posi-

tive for ENT376, while CG was positive for ENT, suggesting the 

presence of  Enterococcus faecalis, and CG2 was positive for CIUM, 

suggesting the presence of  E. faecium. None of  the environmental 

samples were positive for amplification of esp, and only two, SS 

and EGO were positive for IS16. 

Sequence Analysis
To further analyze and compare DNA targets that were amplified, 

PCR products from a sampling of  reactions were sequenced, and 

compared to sequences with the National Library of  Medicine’s 

National Center of  Bioinformatics (NLM NCBI) database to con-

firm that the correct targets were amplified (Table 4). In each case 

the expected product was amplified with near 100% identity to 

predicted sequences (Table 2), with one caveat. The IS16 prim-

er set was designed to recognize human pathogenic, clinical E. 

faecium strains, but bacterial DNA template from both dog and 

human fecal samples resulted in amplification of  identical prod-

ucts with the highest similarity to a human isolate, with a very 
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Table 4

Sample PCR products sequenced. 

close second match to a dog isolate.

Sequence data from a subset of  amplification products 

were aligned and compared to each other. Of  the 11 amplifi-

cation products analyzed, only S1 and S15 products with ENT 

primers contained nucleotide variations. More variation was ob-

served when comparing the sequences from amplification with 

the ENT376 primer set. Of  15 samples that were sequenced 5 of  

them contained at least one nucleotide difference. Only two sam-

ples from amplifications with ESP primers were sequenced and the 

sequences were identical. Both of  these samples were from sewage 

effluent, MAYO and SP1. From the IS16 primer set there were 

4 samples sequenced. These had variations in at least two of  the 

four samples, but because of  low quality sequence data confidence 

in the variations was also low.

MLST database alignments and primer design
Alignment of  a portion of  the E. faecium psts locus revealed that 

of  the 105 psts alleles in the pubMLST, alleles 11 and 7 were most 

frequently associated with bacterial DNA from canine sourc-

es, while allele 1 was more often associated with bacterial DNA 
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from human sources (Jolley et al. 2018). Nucleotide differences 

were used to design primers able to specifically amplify DNA from 

psts allele 11 (Figure 2 and Table 2). One such primer is indicat-

ed with yellow highlighting. Initial assays involved varying PCR 

conditions, specifically using different annealing temperatures that 

would affect the stability of  primer binding. Higher annealing tem-

peratures require a perfect match between primer and target and 

lower temperatures, potentially allow binding and amplification 

even if  there are mismatches between the primer and the target. 

In amplification reactions comparing templates from sewage sam-

ples, SP1 and Mayo, and dog samples, D3 and S5, an annealing 

temperature that was able to differentiate between sources, there-

fore allowing amplification from templates of  one species but not 

the other, was not found (data not shown). 

In much the same way that the psts locus was analyzed, mul-

tiple atpa sequences from the pubmlst E. faecalis database were 

aligned to identify alleles frequently associated with canine sources. 

MLST allele 15 was more often associated with bacteria obtained 

from dogs than humans. Therefore, primers were designed that 

would target only allele 15. In PCR reactions containing the at-
pa-specific primers and DNA template from sewage samples, SP1 

and Mayo, and canine samples, D3 and S5, varying annealing 

temperatures either resulted in successful amplification in all re-

actions or no amplification in all reactions. Similar to the results 

Figure 2

Comparison of  psts allele sequences from the pubMLST E. faecium 
database. Sequence differences are underlined and the sequence chosen  
for a potential species-specific primer is highlighted.
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observed in the psts assays, nucleotide differences were either not 

present in the template or not significant enough to cause tem-

perature-dependent differential annealing of  primers at the target 

sites (data not shown). 

Sequencing of  a subset of  amplification products revealed that 

only the product from bacterial sample P002 with primer set atpa15 

contained a nucleotide difference (Figure 3). Interestingly P002 was 

also the only one of  the 7 sequences amplified with the psts11 prim-

er set that contained nucleotide differences (data not shown).

Discussion

Determining bacterial concentration in a water sample, import-

ant to determining safety for recreational use, does not provide 

information on the source of  contamination. Consequently, con-

siderable effort has been made developing MST methods (Meays 

et al. 2004). Enterococcus sp. have emerged as the recommended 

FIB for both fresh and brackish waters, making them a conve-

nient target for this study since samples identified as having high 

Figure 3

Sample of  the atpa sequence alignment of  E. faecium amplified using the 
atpal15 primer set and sequenced by Genwize. Nucleotide variations are 
underlined and highlighted.
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FIB concentration can be targeted for MST without the need for 

collection of  an additional sample, without the need for collection 

of  a larger sample, and without the wasted effort of  processing a 

sample that is later found to lack contamination. 

Starting with primers previously reported to have specificity 

for one, or a subset of  FIB species (Table 1), studies were under-

taken to assess the feasibility of  similar studies with samples from 

local sources including Enterococcus bacterial DNA from human, 

canine, sewage treatment facilities, and local rivers. The ENT 

and ENT376 primer sets target the 16s rRNA gene in Enterococcus 
faecalis and multiple Enterococcus species, respectively. The CIUM 

primer set is specific for the 16s rRNA gene in Enterococcus faecium, 

while the esp and IS16 primer sets target sequences originally as-

sociated with virulence genes in virulent strains of  E. faecium, but 

also present in some E. faecalis strains. In addition, reports utiliz-

ing esp and IS16 primers relied on the association of  their targets 

with bacterial samples from human clinical settings, both of  which 

have been linked to vancomycin resistance (Werner et al. 2011; 

Willems et al. 2001). 

Looking more closely at the amplification results in Table 

3, the control type strain E. faecalis NCTC 775 illustrated the ex-

pected pattern of  primer specificity, positive for amplification by 

primers specific for Enterococcus faecalis and multiple Enterococcus 
species, ENT and ENT376, respectively, and lacking amplification 

of  the esp and IS16 targets, associated with bacteria from clinical 

human samples (Mohamed et al. 2018; Scott et al. 2005; Werner 

et al. 2011). E. faecium 700221 genomic template resulted in am-

plification of  the CIUM target, specific for E. faecium, and the 

virulence specific esp and IS16 targets as expected (Table 3 and 

Figure 1). 

The low number of  individual human fecal samples (n=3) in 

this study complicates statistical analysis of  the results. While the 

sewage effluent (n=8) provided a larger human population, the 
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material entering treatment plants does not only contain human 

fecal matter. Sewage influent potentially contains animal feces and 

chemicals that may remove some bacterial species of  study. To be 

confident in correlations between primer specificity and human 

fecal sources, future studies will require additional human samples 

from both community and clinical settings. 

Although the ESP and IS16 primer sets were not able to 

distinguish between human and canine fecal sources with 100% se-

lectivity, this finding is not entirely surprising. First, work by Ahmed 

(2008) evaluating sensitivity of  the ESP primer set, demonstrated 

that about 91% of  sewage and septic samples were esp positive 

with sensitivity between 67% and 100% depending on the type 

of  sample. The findings in this study showed esp-positive results 

in 60% of  human and sewage samples tested, a value not signifi-

cantly lower than earlier results. Second, a recent study reported 

that 29% of  Enterococcus from canine fecal samples were esp-pos-

itive (Stępień-Pyśniak et al. 2021). In this study 13% of  canine 

samples were esp-positive. These findings suggest that esp-carry-

ing Enterococcus strains are moving from human clinical settings to 

human and animal populations outside of  clinical settings, which 

will adversely affect the success of  using esp as a species-selective 

target. An increase in genetic similarities in the bacteria found 

in humans and pet hosts will continue to rise as we live in close 

proximity to each other (Song et al. 2013). Results with IS16 were 

similar. In this study 60% of  bacterial samples from human and 

sewage samples were positive for IS16, and 29% of  samples from 

dogs were positive for IS16. While a study by Werner reported 

100% sensitivity in over 100 samples obtained from humans in a 

clinical setting, less than 5% of  samples collected outside of  hos-

pitals were positive for IS16 (Werner et al. 2011). In another study 

evaluating a transposon related to the IS16 sequence in samples 

from dogs, researchers proposed exchange between humans and 

dogs to explain canine samples positive for the transposon (Simjee 
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Abstract

Submerged Aquatic Vegetation (SAV) is critical to maintaining 

water quality and providing food and shelter for numerous estu-

arine organisms. As part of  a larger project to restore SAV in the 

Chesapeake Bay, the goals of  this research project were to identify 

healthy beds for seed harvesting, harvest seeds from four native 

SAV species and refine the seed so that it could be stored until dis-

persal for restoration purposes. Through collaboration between 

Shore Rivers, Maryland Department of  Natural Resources and 

the Anne Arundel Community College Environmental Center, 

seeds collected in the summer of  2021 will be dispersed in 2022, 

with the ultimate goal of  restoring one acre of  SAV. Four types of  

native aquatic plants, Ruppia maritima (widgeon grass), Zannichellia 
palustris (horned pondweed), Stuckenia pectinata (sago pondweed), 

and Potamogeton perfoliatus (redhead grass) were collected into 20 

baskets per species and then processed in a turbulator to separate 

the seed. After turbulating, the plant material was further pro-

cessed through a series of  screens to refine the pure seed, which 

was later isolated and placed into jars with a salt solution. Over 

the winter, seeds were stored in the jars until they will be mixed 

with sand and dispersed into the bay for future restoration proj-

ects. More than 1,000,000 seeds were collected this summer from 

all four species combined, and over 100 hours of  volunteer time 

went into the seed processing/refining process.
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Introduction

Submerged Aquatic Vegetation (SAV) plays a crucial role in main-

taining the health of  the bay ecosystem. SAV is composed of  a 

diverse collection of  plant species that are located beneath the 

water surface and are entirely submerged except during low tide. 

There are over 20 species of  SAV located in the Chesapeake Bay 

watershed (Chesapeake Bay Program, 2020). SAV beds help to 

absorb excess nutrients and trap particulate matter such as sand 

and silt that often cloud the water, suffocating and killing marine 

life (Chesapeake Bay Program, 2020). These beds provide shel-

ter, habitat, and a food source for many organisms, especially 

waterfowl (Chesapeake Bay Program, 2020). SAV beds serve as a 

general indicator of  the overall health of  the Chesapeake Bay due 

to their sensitivity to water quality changes (Blankenship, 2021). 

When water quality improves, the abundance and quality of  the 

Figure 1

Abundance of  SAV 1984–2020 
(Chesapeake Bay Progress).

Estimated Additional Acreage

Submerged Aquatic Vegetation Observed
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aquatic vegetation beds are affected positively and tend to improve 

(Blankenship, 2021).

After several years of  continual growth in acreage of  SAV 

beds in the Chesapeake Bay, total acreage of  SAV declined 7% in 

2020  – the second consecutive year of  SAV decline since peaking 

three years ago (Blankenship, 2021) (Fig. 1). However, the pres-

ence of  underwater grasses often shows trends of  a boom and bust 

cycle, as some grasses are more sensitive to changes in water qual-

ity than others and will rapidly decline one year, but flourish the 

next year such as Ruppia maritima (Blankenship, 2021). According 

to Brooke Landy, a biologist with the Maryland Department of  

Natural Resources, “It’s important to keep in mind that last year’s 

decrease, and the decrease in 2019, didn’t represent a loss of  a 

long-term abundance and distribution, it was a decrease from a 

relatively recent expansion” (Blankenship, 2021). This emphasizes 

the importance of  protecting and maintaining stable underwater 

grass populations.

In the Chesapeake Bay, SAV restoration planting efforts be-

gan in 1978 with whole Zostera marina plants, using sods, cores, 

or bare-root plants (Ailstock & Shafer, 2006). In the 1980’s whole 

plant cuttings, seeds, and tubers of  Vallisneria americana and several 

other low-salinity species were planted in the upper Chesapeake 

Bay, and in 1985 whole plants of  R. maritima were transplanted in 

the mid-bay Choptank River (Ailstock & Shafer, 2006). In the past, 

it was most common to restore underwater grasses by harvesting 

the plants from suitable donor beds and transplanting them into 

the bay as individual shoots, shoot bundles, or sods (Ailstock & 

Shafer, 2006). This caused SAV restoration to be limited to small 

projects, typically on a scale of  tens or hundreds of  square me-

ters due to the high costs and logistical constraints of  this method 

(Ailstock & Shafer, 2006). In addition, approximately 40,500 addi-

tional hectares of  SAV were needed to reach the restoration goals 

established by the Chesapeake Bay Program in 2003, therefore a 
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new restoration method had to be identified in order to establish 

plants at such a scale (Chesapeake Executive Council, 2003). 

In 2003, the U.S. Army Corps of  Engineers (USACE) 

Engineer Research and Development Center (ERDC) and the 

National Oceanic and Atmospheric Administration (NOAA) 

Chesapeake Bay Office began to plan and implement their respec-

tive research programs to promote the development of  innovative 

tools and techniques for the large-scale restoration of  SAV (Marion 

& Orth, 2010). This program represented the first coordinated in-

teragency effort to develop, evaluate, and refine protocols suitable 

for large-scale SAV restoration (Shafer & Bergstrom, 2010). Since 

this research initiative began, an average of  13.4 ha/year of  SAV 

has been planted in the Chesapeake Bay, compared to an aver-

age rate of  3.6 ha/year during the previous 21 years (1983–2003) 

(Shafer & Bergstrom, 2010). The new techniques and technologies 

allow submerged aquatic plants to be planted at scales that would 

have been unattainable with existing technologies only a few years 

ago (Busch, 2010). Furthermore, the costs of  conducting these 

plantings declined with increased understanding of  the limiting 

factors and new advances in technology development (Ganassin 

& Gibbs, 2008).

The most effective approach involves directly sowing seeds 

into suitable planting areas, a method that emerged as a viable 

means of  planting and restoring large areas of  the seagrass, Zostera 
marina (Ailstock & Shafer, 2006). Once an existing healthy, viable 

underwater seagrass bed is identified, fruiting plants are collect-

ed into baskets and then later processed through a turbulator to 

essentially “shake” the seeds off of  them. After turbulating, the 

plants are processed and refined through a series of  mesh screens 

until just the pure seed is left. After storing the pure seed in various 

containers under brackish conditions in a cold room over the win-

ter months, the seeds are mixed with sand and redistributed into 

areas where SAV beds used to be prominent in Chesapeake Bay 
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regions throughout the spring.

The four types of  native SAV that are of  interest in the lo-

cal region due to their frequency, abundance and diversity of  

tolerances and habitat value are Ruppia maritima (widgeon grass), 

Zannichellia palustris (horned pondweed), Stuckenia pectinata (sago 

pondweed), and Potamogeton perfoliatus (redhead grass). R. maritima 
tolerates a wide range of  salinity, from the slightly brackish upper 

and mid-Bay tributaries through near-seawater salinity in the lower 

Bay (Maryland DNR, n.d.). R. maritima is notorious for disappear-

ing in large quantities when water quality declines but tends to 

quickly reappear a few years later if  conditions are healthy again 

(Maryland DNR, n.d.). R. maritima is most common in areas with 

sandy substrates, although it occasionally grows on soft, muddy 

sediments (Maryland DNR, n.d.). Z. palustris is found in every state 

in the continental United States, as well as in Europe and South 

America (Maryland DNR, n.d.). Z. palustris is widely distributed in 

Chesapeake Bay, growing in fresh to moderately brackish waters, 

in muddy and sandy sediments (Maryland DNR, n.d.). Z. palustris 
seems to grow most abundantly in very shallow water but may 

grow to depths of  5m if  it receives enough light (Maryland DNR, 

n.d.). S. pectinata is widespread in the Chesapeake Bay, growing in 

fresh non-tidal to moderately brackish waters as well as in some 

lakes (Maryland DNR, n.d.). It can tolerate high alkalinity and 

grows on silty-muddy sediments (Maryland DNR, n.d.). Lastly, P. 
perfoliatus is typically found in fresh to moderately brackish and 

alkaline waters (Maryland DNR, n.d.). P. perfoliatus grows best on 

firm, muddy soils and in quiet water with slow-moving currents 

(Maryland DNR, n.d.).

Methods

The first step of  SAV restoration was to identify large-scale veg-

etated beds in the Chesapeake Bay that were healthy enough to 

be harvested. Potentially viable beds were identified using satellite 
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imagery from the Virginia Institute of  Marine Science (VIMS), 

and locations of  nearby boat launches were recorded (Fig. 2). It 

was important to identify SAV beds that had high bed density 

because this ensures the greatest chance of  finding an adequate-

ly-sized and healthy donor site.

Once a suitable donor bed was identified and an accessible 

nearby boat launch was found, kayaks were used to gain access to 

the sites to monitor the growth stage of  plants in those beds (Fig. 

3). Beds were deemed appropriate for collection when the majori-

ty of  plants were in fruit (which contain the seeds).

When the plants were ready to collect, volunteers from Anne 

Arundel Community College (AACC), Maryland Department of  

Natural Resources, and Shore Rivers visited the identified loca-

tions by motorboat and hand collected the plants by removing the 

Figure 2

2020 Satellite Image depicting 
high bed density (the dark green 
area) found in Marshy Creek, 
MD (Virginia Institute of  
Marine Science). Light green 
shows lower-density beds.
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upper third of  viable stems and placing them into 17” round by 

14-1/2” high plastic crab baskets (Fig. 4). After collecting about 20 

crab baskets worth of  plants, they were stored indoors in an unlit 

space in the AACC shed for seven days in large bins to achieve 

after-ripening. The plants were kept moist throughout the seven 

days and were occasionally churned with a metal rake in order to 

prevent rotting. All four species were processed twice: seven days 

after they were harvested, and then again after 14 days.

A turbulator was used to separate the seeds from the stems 

(Fig. 5). There are three turbulators in the state of  Maryland and 

AACC has two of  them. The turbulator is a large six-foot by six-

foot round tank that has a series of  PVC pipes with vacuums 

attached to run CO2 through the water and create a “jet-like” ef-

fect. These jets help to churn the plants and shake the seeds off the 

plants. Plants were turbulated in water for 15 minutes and then the 

tank was drained into a mesh bag to collect the separated seeds. 

Typically, 14 days after collection, seeds were processed a second 

Figure 4

Choptank Riverkeeper, Matt 
Pluta, harvesting bushels of  
Stuckenia pectinata (Sago 
Pondweed) from Broad Creek.

Figure 5

Volunteers from Anne Arundel Community College, Shore Rivers and 
Submerged Aquatic Vegetation Watchers use the turbulator to separate 
seed from stems of  Potomogeton perfoliatus (Redhead grass).

Figure 3

Ripe fruits of  Ruppia maritima.
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time to collect any seeds remaining on the 

plants after the first process.

Following the seed processing stage, 

seeds were refined outdoors to get them into 

a storage-ready state. The seeds needed to 

be as clean as possible with little detritus at-

tached, as they were stored in multiple clear 

gallon-sized plastic jars in a walk-in refrig-

erator at AACC and Shore Rivers Offices. 

When seeds have too much extra material 

on them, they often begin to decompose and 

can easily become contaminated, and then 

cannot be dispersed back into the bay for 

restoration. Storage conditions must provide 

an environment that allows seeds to remain 

viable and dormant, since embryo death or 

premature germination will negate their use 

for restoration. Aeration during storage was 

also important for retaining the viability of  

stored seeds. Research has shown that seeds 

stored at 4°C with aeration have the highest 

germination rates (Ailstock & Shafer, 2006). 

To refine the seeds, the mesh bag full 

of  seed and detritus collected from the tur-

bulator was emptied gradually onto a series 

of  wire screens with decreasing mesh sizes 

(Fig. 6). A hose was used to spray water and 

push the plant material through the screens 

to separate the detritus from the pure seed 

(Fig. 7). After refining, seeds were stored in 

a brackish condition with aeration in a cold 

room at AACC with the intention to mimic 

the estuarine environment. Fish tank aeration 
Figure 7

Processing seed through the series of  mesh screens to refine it.

Figure 6

Spherical seeds of  Stuckenia pectinata (Sago pondweed) 
with detritus attached, ready to be processed.
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pump devices were placed in each jar of  seed 

in order to prevent bacteria and algae from 

growing in the jars during the storage peri-

od. The storage containers were gallon-sized 

clear plastic jars with a screw-on cap with a 

hole in it, in order to allow for the aeration 

pump to be placed inside. All seeds will re-

main in the dark cold room over the winter 

months and will be redistributed throughout 

the Bay in the Spring for restoration (Fig. 8).

Discussion/Recommendations

In 2021, AACC, in partnership with Maryland 

Department of  Natural Resources and Shore 

Rivers, collected all four native plants with a 

goal of  restoring one acre of  underwater seagrass with the seeds 

collected. Approximately 20 baskets of  each of  the following spe-

cies were collected: R. maritima was collected from Broad Creek in 

Talbot County, S. pectinata was collected from Rock Hall in Kent 

County, Z. palustris was collected from Tilghman Creek and the 

Wye River in Talbot County, and P. perfoliatus was collected from 

Marshy Creek in Queen Anne’s County. 

This project could be improved by increasing monitoring of  

both previously restored beds and harvested beds. Post-restoration 

monitoring can be a strain on organizational resources, and there-

fore most volunteer restoration projects do not include follow-up 

monitoring to determine their long-term effectiveness (Chesapeake 

Bay Program Submerged Aquatic Vegetation Workgroup, 2020). 

In addition, no long-term data has been collected analyzing the 

health of  the harvested beds, some of  which have been harvested 

over several successive years. Monitoring of  affected beds (both 

harvested and restored) is necessary to determine the success rate 

of  restoration efforts and to ensure that healthy beds are not being 

Figure 8

AACC Faculty (Tammy 
Domanski, left) and student 
volunteers distribute seeds on 
the Magothy River.
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jeopardized in the restoration process. In conjunction with this ef-

fort, it would be helpful to monitor water quality in the areas of  

restored and harvested beds. Each of  the four species of  interest 

in this region have slightly different tolerance limits and growing 

conditions, therefore water quality data from harvested and re-

stored sites would provide additional information to help explain 

restoration success rates. 

Another area of  further study could include analyzing the 

restoration success rate per species of  interest. Low transplant sur-

vival and seedling establishment rates at the large-scale planting 

sites within Chesapeake Bay suggest that current site selection cri-

teria are either not stringent enough or are incomplete, due to 

a lack of  understanding of  factors influencing both seed germi-

nation and seedling establishment (Shafer & Bergstrom, 2010). 

Ideally, a series of  germination tests would be performed on each 

seed type collected in order to determine seed viability per species. 

In addition to lab-based germination tests using terrestrial sub-

strate, an aquatic germination test should be conducted as well. 

The underwater planting environment differs substantially from 

terrestrial systems in that conditions such as light and nutrient 

availability and sediment stability are much less predictable (Koch, 

2001). This would provide more information about the specific 

conditions that support high germination rates for each species. 

Proper seed storage conditions also deserve further research, 

as there is a lack of  data in regards to storing seeds with detri-

tus attached. There are currently three methods used to store and 

disperse seeds for restoration projects involving all species (Ailstock 

& Shafer, 2006). Two require either no storage or temporary stor-

age under the ambient conditions to which wild populations are 

generally exposed (Ailstock & Shafer, 2006). The third method 

focuses on long-term storage, which enables seed availability when-

ever they are needed (Ailstock & Shafer, 2006). With the possible 

exception of  such plants as Zostera marina and Thalasia testudinum, 
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information on the variation in storage and germination require-

ments of  the seeds of  most underwater grasses is sparse (Ailstock 

& Shafer, 2006). 

These questions remain unanswered because they require 

an immense amount of  resources and volunteer time. In order to 

collect the necessary data, a large volunteer base is needed to con-

sistently monitor and analyze beds as well as perform lab tests over 

multiple years. Collaborations between local nonprofits (eg. Shore 

Rivers), state agencies (eg. Maryland DNR), and academic institu-

tions (eg. AACC Environmental Center faculty, staff and students) 

provide a great opportunity to seek the answers to these questions. 
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Abstract

High bacterial levels in recreational bodies of  water can be a 

risk to human health, and significant effort and funding are in-

vested in monitoring fecal indicator bacteria (FIB) levels. Despite 

the health risk, methods commonly utilized to determine bac-

terial concentrations provide no information about the source 

of  contamination. This study assesses the feasibility of  utilizing 

quantitative polymerase chain reactions (qPCR) to perform mi-

crobial source tracking (MST) that will identify the source of  fecal 

contamination in rivers and streams in Anne Arundel County. 

Human and canine fecal bacterial DNA samples were analyzed 

using primer sets previously reported to target genes frequently 

identified in host-specific bacterial species. Primers specific for esp, 

encoding the enterococcal surface protein often associated with 

human fecal bacteria in clinical settings, and primers specific for 

the Bacteroides 16s rRNA genes, either specific to bacterial genomes 

from canine or human sources, were utilized. Quantitative poly-

merase chain reaction (qPCR) analysis demonstrated that, while 

the primer sets successfully amplified target sequences, there was 

some amplification of  non-target sequences within the target 

host, and some amplification of  genes in samples from non-target 

hosts, such as amplification of  sequences in dog bacterial DNA by 

human bacterial-specific primers. Gel electrophoresis and DNA 
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sequencing of  sample qPCR products were conducted and con-

firmed that target genes were amplified, although the identity of  

some of  the off-target products remains to be determined. Primers 

reported to target sequences in bacteria from dog feces showed 

higher specificity, but still resulted in some off-target amplification. 

On-going work includes optimizing assay conditions and primer 

sequences to increase specificity and reducing potential sources 

of  reaction contamination which may be contributing to some 

off-target results.

Introduction

Fecal contamination in environmental waters intensifies the human 

health risk of  infection from waterborne pathogens. These patho-

gens originate not only from human fecal sources, but also from 

the feces of  other mammals and some birds. Human-compatible 

pathogens are particularly prevalent in the feces of  domestic pets, 

with one study estimating 39.1% of  human pathogens being able 

to infect domestic animals (Green, White et al. 2014). Feces of  

domestic animals are also likely found in higher proportions than 

feces of  wildlife in environmental waters, as the disposal of  feces 

from pets and domestic animals are typically left to the owner dis-

cretion. This increased likelihood of  cross infection and higher 

proportion of  human-compatible infection sources accentuates 

the need to detect not only the presence of  waterborne pathogens 

from fecal contamination, but also the source of  feces. 

Due to the wide variety of  waterborne pathogens, partic-

ularly in environmental waters with fecal contamination, it is 

unreasonable and unrealistic to attempt monitoring all waterborne 

pathogens. As such, environmental water samples have historically 

been tested for one or more species of  bacteria that are unlikely 

to be found in water absent of  fecal contamination. For example, 

the Environmental Protection Agency (EPA) recommends testing 

recreational swimming waters for fecal coliforms, Escherichia coli (E. 
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coli) or Enterococcus sp., with enterococcal testing more preferable in 

marine and brackish waters (US EPA, 2012). While enumeration 

of  bacteria can be informative and guide decisions about the safe-

ty of  contact with recreational waters, microbiological assays do 

not provide information about the specific source of  the bacteria.  

Methods have been developed, with varying success, to 

determine the bacterial source of  contamination using library-de-

pendent methods such as antibiotic resistances, bacteriophage 

sensitivity, pulsed-field gel electrophoresis and biophysical char-

acteristics (Simpson et al. 2002; USEPA, 2005); however, many 

of  those methods are labor-intensive, requiring twenty-four hours 

for bacterial culturing and collection of  many samples from spe-

cies known to most likely cause contamination in a given area 

(Harwood et al. 2013). Library-independent methods rely on the 

identification of  sequences within a given species that have iden-

tifiable nucleotide variation dependent on the source organism. 

This process is referred to as molecular microbial source tracking 

(MST) and predominantly utilizes qPCR technology employing 

tagged primers and probes that are measured at each cycle in an 

amplification reaction. This makes it possible to compare the con-

centration of  template DNA between samples and more precisely 

differentiate relative levels of  contamination from specific sources. 

Some studies have suggested that Bacteroides, while not recom-

mended as an indicator for contamination with microbiological 

methods due to the inability to culture the anaerobes, may be the 

best organism for molecular MST due to identified host-specific 

sequences (Layton et al. 2006). 

While a number of  studies have proposed species-specific 

primer sets, the method is far from standardized (Harwood et al. 

2013). There are multiple organisms and gene targets proposed, 

some studies have not been field tested, and those that have been 

field tested have suggested that sequence specificity may also be 

region-specific (Harwood et al. 2013). In addition, the EPA has 
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released two methods for quantifying fecal contamination in wa-

ter. One quantifies total Enterococcus concentration (US EPA, 2015) 

and the second quantifies human-specific fecal contamination 

(USEPA, 2019). Both procedures require costly, assay-specific re-

agents. This project assesses the feasibility of  qPCR for molecular 

MST to not only determine if  the source is human, but to identify 

other sources, specifically starting with pet waste, predicted to be 

responsible for up to 46% of  fecal contamination in the waters 

around Anne Arundel County (TMDL Plan, 2017). Significant 

progress was made toward that goal, and further studies will ex-

pand use of  additional primer sets and probe types. 

Materials and Methods

DNA template samples
Canine fecal samples were obtained from local veterinarians and 

dog owners. Individual human samples were obtained from anon-

ymous volunteers. Bacterial DNA from canine feces (BDCanine) 

(21D1 through 21D7; n=7) and bacterial DNA from human fe-

ces (BDHuman) (21p001 through 21p004, p003, p004; n=6) 

were isolated using a Zymo Quick Fecal/Soil Microbe kit from 

approximately 0.1 g of  fecal matter. DNA concentrations were 

determined by absorbance at 260 nm and DNA quality was deter-

mined by 260/280 ratio.

Quantitative PCR
Assays were conducted utilizing SYBR green chemistry, specifi-

cally utilizing the qPCRBio SyGreen Blue Mix (PCR Biosystems). 

Unless otherwise stated, 20 μl  reactions included 1X SyGreen 

Blue Mix (3 mM MgCl2 final concentration),  400 nM forward 

and reverse primers, and 10-73 ng DNA. Primer sets with previ-

ously reported specificity for host organisms were utilized (Table 

1). Primers were obtained from Integrated DNA Technologies 

(Coralville, USA).
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Conditions for qPCR
The samples were analyzed in a mic PCR instrument (Biomolecular 

Systems, Sydney, Australia) unless otherwise stated. The condi-

tions for the qPCR were as follows: hold Steps- hold at 95℃ for 

3 min; cycling- 1) 95℃ for 10 sec 2) 60℃ for 30 sec acquiring on 

green; melt on green- hold at 95℃ for 15sec, hold at 60℃ for 

60sec, melt from 65℃ at 0.15 C/sec.  Threshold values were auto-

matically assigned by the instrument for each assay.  The Cq value 

is defined as the cycle at which a reaction’s fluorescence reaches 

the threshold, and the lower the Cq value, the higher the number 

of  DNA targets in the template sample.

Agarose gel electrophoresis
qPCR products were analyzed on 1.5% agarose and stained with 

ethidium bromide.  Fragment size was estimated by comparison to 

two standards (100 bp and 1kb, EZvision, Amresco).  

Gene sequencing and analysis
Select qPCR products were sequenced by Genewiz (genewiz.

com) on both strands using the primers listed in Table 1. The raw 

Table 1

Molecular microbial source-tracking (MST) primers utilized in this study.
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sequences from both strands were manipulated in DNA Subway 

(dnasubway.cyverse.org) to trim low quality ends, align the com- 

plementary strands from each sample, and trim each result to a 

consensus sequence.  To assess specificity of  each primer set NCBI 

Nucleotide BLAST (blastn) analysis was performed. 

Results

Host Specificity of primers
Initial qPCR assays were conducted utilizing primers previously 

reported to have specificity for BDCanine (DG3F and DG3R) and 

BDHuman (HF183F, HFDrev and HFBacR) using qPCR condi-

tions recommended for the SyGreen Blue reagents. 

Human-specific primers
Two reverse primers were used in the analysis of  BDHuman  

in order to compare the validity of  the results based on the qPCR 

practices available. The HF183F forward primer has been histori-

cally used with the HFDRev reverse primer to specifically amplify 

the 16s rRNA gene in the genus Bacteroides (human 1). A research pa- 

per reported that the HFBacR reverse primer improved specificity 

(human 2) (Green et al., 2014) so reactions were run separately 

with the human 1 and human 2 primer sets for comparison. While 

the average Cq value for reactions using BDHuman were almost 

identical when comparing human 1 and human 2 primers (Cq av-

erage =  23.0), the human 2 primer set resulted in more variation 

as determined with standard deviation (SD) calculations (SD= 3.7 

and 9.0, respectively) (Figure 1). Consequently, the human 2 prim-

ers were not included in later assays.

When comparing the average Cq values in assays performed 

with the other primer sets, the esp and dog primer sets produced 

consistently higher Cq values than the human 1 primers (Figure 

2).  The average Cq value for all reactions with dog primers and 

BDHuman was 26.5 and the average with esp primers was Cq of  
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28.9. The SD with esp primers was 2.6, overlapping the average 

from the dog primers (SD= 3.8). Higher Cq values in assays with 

BDHuman and dog primers is encouraging. The dog primers’ 

high Cq values indicate they are specific for something not found 

in the BDHuman. The esp primers resulted in Cq values similar to 

those with dog primers and BDHuman.

The largest SD from the triplicate samples using the dog 

primers was 0.5, which does not place the Cq values within the 

range of  any of  the data collected using the human 1 primers. The 

average Cq values of  the dog and esp primers were similar, and 

were closest with the 21p002 sample (Figure 2). The dog primers 

exhibited much lower SD values, such as 0.2 for the 21p002 sam-

ple, which did not fall in the range of  the esp results. 

Overall, in assays with BDHuman, the human 1 primers re-

sulted in a Cq average significantly lower than the Cq average with 

dog primers (p=0.0011 in two-tailed t-test) and significantly lower 

than the Cq average with esp primers (p=2.1 x 10-8).  Of  note, the 

dog primer Cq average was significantly lower than the esp primer 

Cq average (p=0.022). 

Human 1		  Human 2

A
v

er
a

g
e 

C
q

Sample

Figure 1

Average Cq value of  each BDHuman with the human 1 primers versus the 
human 2 primers. Each sample was run in triplicate (n=3). No amplifica-
tion was detected in the reaction with 21p001 and human 2 primers. 
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Dog-specific primers
Assays performed using the dog primers with BDCanine samples 

resulted in Cq values consistently lower than assays containing hu-

man-specific primers with the same samples, indicating a greater 

specificity for BDCanine (Figure 3).  Across assays using BDCanine 

with dog primers, the Cq average was about 18 (SD=2.5). Cq val-

ues for each BDCanine were also consistent across assays, with 

the SD per sample reaching a maximum of  only about 2 cycles. 

Assays using human 1 primers with BDCanine and dog primers 

with BDHuman produced high average Cq values, 27 cycles and 

31, respectively, confirming that each primer set did not efficiently 

amplify bacterial DNA from non-target species.  In a two-tailed 

t-test the Cq average in assays with the dog primer set was signifi-

cantly lower with BDCanine (Cq average=17.8) when compared 

with BDHuman (Cq average=30.8) (p=1.14 x 10-36 ).  

Specificity of primers for target genes
Analysis of  qPCR products. To examine the specificity of  the prim-

ers in targeting specific genes, two 1.5% agarose electrophoresis 

Sample

A
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C
q

Human 1 (n=6)	 esp (n=3)	 Dog (n=3)

Figure 2

Average Cq values for each primer set. The human 1 and esp primers were 
specific for BDHuman and the dog primers were specific for BDcanine. 
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gels were run using the qPCR products from promising assay sam-

ples (Figure 4). Gel A contained qPCR products from assays with 

BDCanine template and gel B contained products from assays us-

ing BDHuman template. The single bands in lanes two and three 

of  Figure 4a, containing the 21D6 product and its first dilution 

from a dilution series assay, indicate a highly specific reaction, 

while the additional less prominent bands in lanes four and five, 

containing the 21D2 and 21D4 products from the 15-Oct assay, 

indicate a much less specific reaction. This difference in specificity 

for gel A is to be expected, as the dilution series assay used ca-

nine-specific primers (dog) with BDCanine and the 15-Oct assay 

used human-specific primers (human 1) with BDCanine.

Similarly, in Figure 4b, lanes two and three contain 21p003 

and P003 products from the 11-Nov assay using the esp primers. 

Both reactions resulted in two bands. The esp primers target the 
esp gene, previously reported to be present only in Enterococcus from 

human sources in clinical settings (Ahmed et al. 2008). The pres-

ence of  multiple bands on the agarose gel suggests that the esp 

Figure 3

Average Cq values of  each sample of  BDCanine with human 1 primers 
versus dog primers. The human 1 data represents the results of  one assay 
(n=3), while the dog data represent the results of  three assays (n=9).
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Human 1 (n=3)		  Dog (n=9)



40  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

primers are not necessarily specific to one target. Lanes four and 

five contain 21p002 and P004 products from the 29-Oct assay 

with human 1 primers. The results of  the gel show that in lane 

four there is a band of  the expected size (167 base pairs). Lane 

five contains multiple products, suggesting that the primers were 

not specific to one target. Lanes six and seven contain products 

from reactions containing 21p003 and 21p002 templates from the 

1 2

a

b

3 4 5 6 7
21p003 21p002 21p00221p003P003 P004

21D6 21D6-1 21D2 21D4

Figure 4

1.5% agarose gel electrophoresis. In both gels, lane 1 contains a 100-bp ladder, 
and the remaining lanes contain qPCR product samples. Gels were stained with 
ethidium bromide. 4a) qPCR products from reactions containing BDCanine 
as indicated and dog primer set: lane 2 = 21D6, lane 3 = 21D6-1, lane 
4 = 21D2, lane 5 = 21D4. 4b) qPCR products from reactions containing 
BDHuman as indicated and either esp primers (lanes 2 and 3), human 1 
primer set (lanes 4 and 5), or human 2 (lanes 6 and 7): lane 2 = 21p003, 
lane 3 = P003, lane 4 = 21p002, lane 5 = P004, lane 6 = 21p003,  
lane 7 = 21p002. The arrow next to 4b indicates the 126 bp band.
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8-Oct assay with human 2 primers. The expected band size for 

DNA with these primers is 126 base pairs and was present in both 

lanes. Lane six also contained a larger band likely due to non-spe-

cific binding at non-target sequences. 

Sequencing of  amplification products from each primer 

set with each type of  template was conducted (BDHuman and 

BDCanine) to confirm successful amplification of  the target se-

quence. The qPCR products that displayed greater specificity 

in the agarose electrophoresis gel runs were sent for sequencing. 

Reactions containing multiple products were expected to produce 

poor quality sequence, confirmed by the poor quality of  sequence 

obtained from the P003 with esp primers sample. Specifically, lanes 

two, three, and five from the gel in Figure 4a, containing reaction 

products from samples 21D6 and 21D6-1 with dog primers and 

sample 21D4 with the human 1 primers, and lanes four and seven 

from the gel in figure 4b, containing reaction products from sample 

21p002 with the human 1 primers and with the human 2 primers. 

Lane three of  the gel in figure 4b, containing sample P003 with 

the esp primers, was also sent for sequencing even though there 

were extra bands present. 

The DNA sequences were manipulated and analyzed with 

Cyverse’s DNA Subway. Poor quality reads near the ends were 

trimmed and the forward and reverse strands from each sample 

were paired to find a consensus of  high confidence. Each con-

sensus sequence underwent a BLAST search (blast.ncbi.nlm.nih.

gov/) to determine the identity of  the gene amplified in qPCR 

reactions. Sequence manipulation and an example outcome are 

illustrated in figure 5. 

The product from the reactions with 21D6 templates, un-

diluted and -1 dilution, and canine specific DG3 were nearly 

identical, with the only difference being an additional three bases 

on the undiluted sequence. As such, the BLAST searches produced 

nearly identical results, matching Bacteroides sequences, coinciding 
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with the reported specificity of  the DG3 primer set (Green, White, 

et al., 2014). The other sequenced canine product 21D4 from a 

reaction with the human 1 primer set resulted in the closest match 

Figure 5

Sequence manipulation and analysis. The amplification product from human 
fecal bacterial DNA amplified with the human 1 primer set was loaded into 
the DNA Subway-Cyverse data workspace for trimming and consensus iden-
tification. 5a) Forward (21p002-HF183) and reverse (21p002-HFDrev) 
were paired and initial system-generated trimming performed. 5b) After the 
Cyverse system generated the reverse complement of  HFDrev, the two sequenc-
es were aligned and the consensus, sequence of  complete identity chosen. 5c) 
The best match alignment generated by the NCBI nucleotide BLAST system 
(blast.ncbi.nlm.nih.gov/Blast.cgi).

a

b

c
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to uncultured microorganisms containing the 16S ribosomal RNA 

gene. However, exact sequence matches were also found for a 

number of  Faecalibacterium prausnitzii strains, which also contain the 

16S rRNA gene. The human 1 primer set is intended to target the 

16S rRNA gene (Haugland et al. 2010]), so these results are not 

surprising.

The 21p002 sequence resulted in a 73 base pair, high qual-

ity consensus that was used in a BLAST search and matched the 

Bacteroides 16s rRNA gene, as expected. The 21p003 product (hu-

man 2 primers) was of  poor quality, but a 25 base pair sequence 

was put through a BLAST search and was a match to the 16s 

rRNA gene in Bacteroides. The results of  this search showed match-

es to the same gene in multiple species, specifically Bacteroides dorei 
and Bacteroides vulgatus, whereas the human 2 primer set resulted in 

matches only to Bacteroides dorei. 
The sample of  p003 product with the esp primers was sent 

for sequencing even though it had two bands present in the aga-

rose gel. The sequences were of  low quality with high background 

which suggested that there may be multiple DNA species present, 

and was expected based on the agarose gel results. A portion of  

the consensus was used in a BLAST search and matched the esp 

gene in Enterococcus faecium and Enterococcus faecalis, which are both 

known to inhabit the human gastrointestinal tract. 

Determination of standard curve for dog-specific primers
A standard curve was created using the dog primers and a dilution 

series of  BDCanine sample 21D6. This sample had the lowest av-

erage Cq value, at about 15 cycles with a low SD across replicates 

and assay dates and was thus chosen for the dilution series (Figure 

6). Undiluted and six ten-fold dilutions of  the sample were used in 

the assay. Dilutions greater than 104 did not result in amplification. 

The average Cq values for the other samples, undiluted through 

104 were approximately 14, 18, 22, 27, and 29 cycles, respectively. 
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Examining the average Cq values as a function of  the sample di-

lution displays a linear relationship, Cq=3.85x+14.4 (r2 =0.996), 

consistent with an expected slope of  a bit greater than 3.3 which 

reflects the exponential nature of  the amplification process. 

Discussion

Based on the assays conducted and analyses performed, the dog 

primer set shows promise in differentiating between BDCanine 

and BDHuman samples. The dog primer set produced significant 

differences in Cq value for known positive and known negative 

samples, indicating that it was selectively amplifying BDCanine 

target sequences. The dog primer set also produced consistent 

Cq results, with a maximum SD of  1.9 cycles for canine samples 

across assays and SDs of  less than 0.6 cycles for all assays using 

the dog primer set. These together indicate that the dog primer 

set is a good candidate for further testing and eventual use in the 

monitoring of  environmental waters. Further testing will involve 

the use of  specific positive controls, such as synthetic plasmids 

of  targeted DNA sequences rather than BDCanine, and the use 

of  alternate probes, such as the Taqman probes used in previous 

Figure 6

Average Cq values (n=3) for each dilution of  sample 21D6 with dog primers.
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studies (Green, White, et al., 2014), in order to further improve the 

specificity of  the primer set.

Results from assays with BDHuman and human-specific 

primers suggest that this procedure for identifying BDHuman 

samples is promising. The average Cq values of  all results from 

each primer showed that the two human specific primer sets, hu-

man 1 (n=36)  and human 2 (n=18), resulted in near-identical 

Cq values of  23.0 cycles. Both primer sets amplified the bacte-

rial DNA with reasonable values across multiple different assays 

with different DNA samples. The specificity of  the two primer 

sets were compared by looking at the average SDs for the same 

total number of  assays (n=18). The human 1 primers were more 

precise, with a SD of  0.9 compared with the human 2 primers, 

SD of  9.5. In light of  the results in this study, which did not agree 

with a previous report (Green, Haugland et al. 2014), the human 

1 primer set was utilized in most assays. In addition, the Green 

study discussed the increased likelihood of  very small primer-di-

mer formation when using the human 1 primer set.  Our study did 

not show significant primer-dimer formation, which would result 

in bands smaller than the smallest band in the 100 bp standard 

(Figure 4).  The study by Green et al. utilized samples from a wider 

range of  species, including chickens, cattle, cats and deer, a slight-

ly larger human sample population (n=6), and a large number of  

samples from wastewater facilities from across the United States 

(n=54) (Green, Haugland et al. 2014), which likely reflected more 

overall sequence variation. Future studies in our laboratory will in-

clude a wider range of  species and wastewater samples, although 

our focus will be on methods with the highest specificity for strains 

in Anne Arundel County.  

While this study shows great promise for use of  qPCR for 

molecular MST, there are several areas that will benefit from 

method and technique optimization. In multiple experiments 

containing primers specific for one species and template from 
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the other species amplification products were detected, although 

those reactions were intended as negative controls and predicted 

not to amplify any product. Sequencing revealed that the expect-

ed target gene was amplified (figures 2 and 3 and BLAST results).  

These results suggest that either amplification conditions need to 

be altered to increase specificity of  the primers, or that the primer 

sequences need to be optimized to decrease non-specific anneal-

ing. Although in all cases such reactions resulted in significantly 

higher Cq values than reactions containing the matched primers 

and template, confidently distinguishing between contamination 

sources will require optimization to more clearly differentiate be-

tween source species. The goals in this type of  assay are low Cq 

values for assays containing target species’ DNA templates, and 

the absence of  amplification, so  no Cq value in assays containing 

non-target species’ DNA. 

In rare cases, water only controls, containing no template 

DNA, resulted in amplification. These positive results were 

typically only found in one of  the sample triplicates and not re-

flected in the other two triplicates of  the sample primer and 

sample combination, indicating the probability of  intermittent 

cross-contamination over non-specificity of  the primer set. As 

cross-contamination can easily invalidate the results of  an assay, 

the techniques used in future assays must be improved to remove 

all potential for cross-contamination. Additional improvements in-

clude a more objective and explicit definition of  what constitutes 

a positive result, rather than a relative comparison between assay 

samples, and the use of  more specific positive controls such as syn-

thetic plasmids of  targeted DNA sequences, to ensure that primers 

are amplifying targeted DNA sequences rather than unintended 

sequences present in less specific samples.

Other method improvements will include increased use of  

bleach to clean the area and instruments when working with the 

different samples of  DNA. Currently, the bacterial samples from 
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human and dog fecal samples are handled in separate laminar 

flow hoods with separate instruments. As much as space allows, 

samples from different species will be handled in different rooms 

and at different times. The added control would prevent contami-

nation between the different samples from the same sources.  

Other primer sets of  interest from other studies conducted 

by our laboratory (unpublished data) were employed in this study. 

The presence of  the esp sequence was assessed in human fecal bac-

terial samples with the esp primer set. The esp primers have been 

reported to be specific for strains of  Enterococcus isolated from hos-

pitalized patients (Ahmed et al. 2008). The human 1 primer set 

is specific for sequences in Bacteroides, but since DNA was isolated 

from total bacteria collected from fecal samples, Enterococcus would 

also be expected in the sample. However, because the human fecal 

samples analyzed in this study were not from clinical settings, the 

lack of  a strong positive result, a low Cq value, is not unexpected. 

A good positive control and samples from clinical settings are nec-

essary to pursue further use of  the esp primer set. 

Moving forward the next steps in this project include ob-

taining synthetic positive control plasmids that will be diluted to 

known copy number to produce a standard curve precise enough 

for determination of  sequence copy number in samples (USEPA, 

2015), adding Taqman probes to our analysis for comparison, 

and obtaining complex samples such as influent from wastewater 

reclamation facilities and environmental samples from local riv-

ers both after rain events, when bacterial concentrations are high 

and during dry periods when concentrations are low. Taqman 

chemistry utilizes target specific, internal probes that may be more 

specific and less prone to amplification of  non-target sequences, 

although some studies have shown that careful optimization can 

make SYBR technology equally specific and accurate (Tajadini et 

al. 201). 

With the goal of  this work to provide communities and local  
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governments information about the source of  fecal contamination,  

the stakes are high. Decisions about funding for programs to 

decrease sources of  contamination, the possibility of  costs to 

homeowners that might upgrade septic systems, the cost to pub-

lic agencies trying to locate broken or leaky sewage pipes, and 

the confidence in community members in the safety of  their 

beaches may be made based on methods developed in this study. 

Consequently, every effort will be made to optimize and validate 

results and every possible quality control mechanism will be added 

to the final protocol. 
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Abstract

The traditional standards-based or competency-based grading 

systems, preferred by American schools and colleges, do not incor-

porate non-academic student achievement factors, such as effort, 

attendance, or attitude when evaluating student performance. 

This paper reviews current literature on the effectiveness of  an al-

ternative grading system, called effort-based grading, that includes 

criteria for educators to represent non-academic achievement fac-

tors in student evaluation. The research will show that effort-based 

grading is effective in motivating student achievement up until stu-

dents are able to exert the least amount of  effort for the maximum 

achievement, where then standards-based or competency-based 

grading systems become more effective.

Introduction 

Despite American schools and colleges using mostly a stan-

dards-based education system, many instructors tend to incorporate 

non-academic achievement factors into their grading systems, 

such as student effort, attendance, and attitudes (McMillan, 2018). 

This addition to the grading scale may be due to instructors want-

ing to represent the work the students are putting forth that may 

not be represented solely in their performance-based grades. 

However, according to McMillan, “Most assessment experts agree 

that nonacademic indicators should have little or no bearing on 

the academic performance grade” (McMillan, 2018, p. 438). This 

paper will look at the effectiveness of  incorporating student effort 
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in grading, whereas effectiveness is defined as the ratio of  effort to 

performance. The following sections include a literature review, 

research gap identification, and suggested areas for future study. 

Literature Review 

Over the years, researchers have looked theoretically and empiri-

cally at the correlation between student effort and student grades. 

They looked within the parameters of  student performance in par-

adigms that included student effort as part of  the grading criteria 

(Swinton, 2010), absolute and relative grading systems (Paredes, 

2017), and instructor influence(s) on the gap between student 

effort and grades (Highfill & Marcum, 2019). In each case, the 

data shows that effort-based grading is effective up until a certain 

level of  student ability or achievement, where then absolute or 

standards-based grading becomes more effective (Swinton, 2010; 

Paredes, 2017, Highfill & Marcum, 2019). 

Swinton (2010) examines the effectiveness of  Benedict 

College’s Success Equals Effort (SE2) policy for freshmen and 

sophomore level courses where the student’s grade is calculated 

using weighted categories for knowledge and effort. The model 

includes 40% knowledge and 60% effort for freshman courses and 

the reverse for sophomore courses (Swinton, 2010). See Appendix A 
for the grading matrices. Since the model used by Benedict College in-

cludes grades for both effort and knowledge, the matrices indicate 

how each grade impacts the final overall grade. In the freshmen 

model, where student effort is weighted at 60% of  the final grade, 

a student’s final grade will reflect more on their effort than knowl-

edge; whereas in the sophomore model, students must display 

their knowledge rather than rely on their effort to receive their 

desired grade.

Benedict College implemented the policy to increase the mar-

ket value of  its graduates to future employers and its graduation 

rates (Swinton, 2010). A follow-up study by Swinton (2014), showed 
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that the policy did not significantly increase graduation rate, but 

did contribute to a reduced amount of  time for degree comple-

tion. Swinton (2010) argues that the policy’s driving question is 

“how do you induce all students to give effort without lowering 

the amount of  knowledge gained by the students or weakening or 

minimizing the signal that is sent to future employers” (p. 1178). 

The results showed that there is a positive correlation between a 

student’s effort grade and a student’s knowledge grade up until a 

certain point where a student’s academic ability allowed them to 

achieve the maximum desired grade with the minimum amount 

of  effort (Swinton, 2010). This is evidence shown in the gap be-

tween students who have natural academic ability and those who 

must consistently strive to match their peers and get the desired or 

expected grades. This view can also be impacted by the percent-

age of  effort verses true knowledge. Employers often want to know 

how much a candidate already knows verses the effort they would 

put in to learn what they need to know for the required position. 

Swinton (2010) highlights that the impact often comes from 

the instructor’s view of  the learning process, which falls under 

three categories: maximum grades, effort, or knowledge. At the 

university level, instructors need to consider potential employers 

will evaluate a student’s grades and what that information will tell 

the employer about the student’s ability. For example, if  an instruc-

tor just gives all students the maximum grade, the employer will 

have no knowledge of  the student’s ability and the student would 

not be motivated to apply effort to the learning process. Whereas, 

if  the instructor decides to maximize student effort, students will 

apply the effort needed to achieve their desired grade but does not 

tell employers anything about student knowledge or ability. Lastly, 

if  the instructor maximizes knowledge, employers will be able to 

determine student ability, however lower ability students may not 

put effort into the learning process.

Like Swinton’s (2010) conclusions that implemented a partial 
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effort-based system, Paredes, (2017) shows that the same conclu-

sion applies to a full implementation of  an effort-based grading 

system. Paredes theoretically and empirically explores the rela-

tionship between a student’s ability and the amount of  effort the 

student puts forth within a relative (performance-based) and abso-

lute (standards-based) grading environment. The model developed 

for this study, “shows that the grading system can influence both 

the total amount of  effort in a class and the level of  individual 

effort throughout the ability distribution” (Paredes, 2017, p. 114). 

Assuming low ability students did not give up, the model predicted 

that these students would flourish under a relative grading system, 

but struggle within an absolute system where the standards are 

higher, and the cost of  the extra effort would not be worth the re-

sults (Paredes, 2017). The reverse is true for high ability students 

as in a relative system, they may not be inclined to exert as much 

effort due to lower standards (Paredes, 2017). Using a unique 

data set from the University of  Chile (where the grading system 

changed from absolute to relative and then back to absolute), the 

author showed that the model predicted the data trends correctly. 

Paredes (2017) concludes that student effort has a positive effect on 

a relative grading environment until the student’s ability increases 

to the point where the effort no longer is needed to influence the 

grade and that the choice of  grading system will depend on the 

instructor or school’s target student audience. 

The conclusions drawn by Swinton (2010) and Parades (2017), 

that students want to achieve the maximum grade for the least 

amount of  effort, supports the reflection of  Highfill and Marcum 

(2019), showing that students may “discuss strategies to ‘game’ 

the system to ultimately achieve a desired score without strenu-

ous student effort by the student” (p. 61). Highfill and Marcum 

reflect on how instructor choices may affect the gap between a stu-

dent’s effort and grades. To create the gap between student effort 

and grades, the adapted model used by the authors introduces a 
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random component to reflect that there is not a perfect correlation 

between the amount of  effort a student puts forth and the grade 

the student earns (Highfill & Marcum, 2019). Instructors may see 

the gap as the result of  students misjudging their own ability when 

attempting to calculate how much effort they need to receive their 

desired grade or by their own choices due to the subjective nature 

of  grading (partial credit, extra credit, student bias, etc.) or the 

setup of  the grading environment (letter grades, pass/fail, plus/

minus), assuming the instructor has leeway, where they must des-

ignate cut offs for each achievement (Highfill & Marcum, 2019). 

Overall, the efficiency of  effort-based grading will depend on your 

student audience as well as paradigms that exist in the instructor’s 

grading structure.

Research Gap Identification

Given that student ability and achievement tends to limit the ef-

fectiveness of  effort-based grading, potential research gaps include 

evaluating whether the school environment (i.e. an alternative in-

stitution) could potentially increase the effectiveness of  effort-based 

grading, developing a grading system to bridge the gap between 

the effort-based and the standards-based grading systems, and 

determining how a student’s intrinsic motivation and mindset to 

learn can affect how much effort a student is willing to exert when 

it comes to effort-based learning.

In the United States, “within public education, alternative 

schools exist as one form of  dropout prevention and youth re-en-

gagement in school, with approximately 3% of  United States (U.S.) 

high school students attending alternative high schools” (Tierney, 

2020, p. 242). An alternative institution often provides “at risk” 

students, who may not have been successful in a traditional com-

prehensive school based on behavior or academic performance, 

opportunities to learn in a non-traditional school environment. 

At-risk students are defined as those who require interventions 
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for continued academic success. One advantage an alternative 

institution offers is that student success is frequently redefined to 

include non-academic factors such as student social and academic 

engagement, student ownership of  learning goals, and education 

(including graduation progression) and assisting students in iden-

tity development within an academic community (Tierney, 2020). 

This can be reflected upon by higher education institutions as well. 

Since alternative institutions may already include non-aca-

demic factors in their definition of  student success, the addition of  

effort-based grading may assist them in reaching their goals since 

it would allow for student effort to be accounted for and visible 

towards student academic achievement. However, there may be 

a risk to adding an effort-based grading system to an alternative 

institution since students could potentially find a way to exert the 

minimal amount of  effort for the maximum grade, like students in 

comprehensive institutions, except in this case, these students most 

likely would not be ready to transition to a standards-based grad-

ing system. If  this occurred, a stop gap or bridge system would 

need to be researched or developed, to assist the students in the 

alternative institution to continue to progress towards their goals.

Carol Dweck (2006) discusses the fixed and growth mindsets. 

Fixed mindsets are characterized as needing to be perfect, failure 

being the result, negative self-talk, that your qualities are perma-

nent, etc. Whereas with a growth mindset, failure is opportunity, 

seeking progress not perfection, embracing constructive criticism 

to grow and improve, etc. See Appendix B. If  a student has a fixed 

mindset, the less likely they will be to strive for a desired grade 

because they would have already decided it is not possible. With a 

growth mindset, effort becomes critical and the tool a student can 

use to achieve their desired goal. 

The student population’s learning motivation and mindset 

should be determined and potentially improved before introduc-

ing an effort-based grading system to an alternative institution 
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environment to assist with getting the maximum benefit for the 

students. This is due to the majority of  these “at risk” students 

having negative experiences with school and thus, even with the 

addition of  an effort-based grading system, may not attempt work 

if  they believe they will just fail in the end. Again, higher educa-

tion institutions should consider the impact as students transition 

to them from the K-12 environment.

Alfie Kohn (1994) defines two types of  motivation: intrin-

sic motivation, which is ‘an interest in the task for its own sake’ 

and extrinsic motivation, in which ‘the completion of  the task is 

seen chiefly as a prerequisite for obtaining something else.’ Kohn’s 

research shows that students who are extrinsically motivated are 

more likely to lose interest in the task they are working on since 

the end goal is to get the promised reward. Applying this to a class-

room environment may mean that students who are motivated by 

obtaining passing grades will only put forth the minimum effort to 

receive their desired grade, thus curbing a student’s desire to learn 

and their creativity. On the other hand, if  students are intrinsically 

motivated, an effort-based grading system may allow them to ex-

plore their desire to learn about a topic, while rewarding them for 

the effort they put into the task.

Lastly, in another article, Kohn (2015) describes the two 

mindsets set forth by Carol Dweck (2006), the fixed mindset, where 

a person’s intelligence and talent is set and unable to be changed 

and the growth mindset, that says that every person is capable 

of  learning something with enough effort. Students who have a 

growth mindset and believe they can learn the subject or topic at 

hand, are more likely to put forth the effort needed to persevere 

through a task, as mentioned previously. In an alternative insti-

tution environment, aligning an effort-based grading system with 

encouraging the development of  growth mindsets in students, 

may assist students in having a positive school experience, which 

in turn may increase the student’s intrinsic motivation to learn and 
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persevere through challenging tasks.

The identified research gaps are not suggesting that one gap 

is more important than another, however, changing the institution-

al environment may increase the benefit of  the implementation of  

an effort-based grading system. Due to the specialized nature, staff 

at alternative institutions may receive more training or profession-

al development opportunities in mindset and motivation theories. 

Areas for Future Study 

The literature review and research gap identification sections 

have highlighted several areas that would benefit from addi-

tional research. These areas include: the conditions in which an 

effort-based grading system may be effectively implemented, the 

effects on intrinsic motivation and growth mindsets on student ef-

fort, and the development of  a grading system that bridges the 

gap between an effort-based and standards-based grading system. 

One area of  future study should focus on the effectiveness 

of  effort-based grading in an alternative institution environment, 

where student achievement already includes non-academic fac-

tors. This study or studies should include how to improve student 

intrinsic motivation, changing student’s mindset from fixed to 

growth, and the effectiveness of  effort-based grading for “at-risk” 

students. The researcher would like to implement a structured 

grading system that includes student effort as compared to the 

current system. A randomized field experiment could prove useful 

where a control group maintains the current grading system and a 

treatment group works within the confines of  a partial effort-based 

system. The end-goal of  the researcher’s alternative institution 

program is to prepare students to return to their comprehensive 

school. 

Other future areas of  study include how being evaluated un-

der an effort-based grading system may affect employer’s outlook 

of  students, how effort-based grading may inflate student grades 
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in an alternative environment and the effects of  returning to a 

comprehensive school and standards-based grading system, how 

effort-based grading could help students who have a low ability 

in a specific subject to avoid failing and start the conversation on 

how the instructor can help the student overcome the low ability 

in the subject, and the effect an effort-based grading system could 

have on low ability students on having a positive interaction with 

a school environment overall. 

Conclusion

This paper reviewed current literature on the effectiveness of  ef-

fort-based grading, research gap identification, and areas of  future 

study. The conclusion drawn from the literature review is that ef-

fort-based grading is effective up until students can perform the 

minimum amount of  effort for the maximum grade. Lastly, the 

research gap identified multiple areas of  future study that may 

help determine if  effort-based grading may be more effective in 

an alternative education environment. 
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Abstract

For most of  human history, security of  data communication has 

been essential. The relevance of  encryption in times of  war and 

(more recently) in the information age is difficult to overestimate. 

During the 20th century, advances in mathematics and technology 

prompted the proliferation of  many new methods of  encryption. 

Among these methods, the Hill cipher, a polygraphic substitution 

cipher introduced in 1929, pioneered the use of  modular arithme-

tic and linear algebra in an encryption algorithm. In this paper, 

we explore the Hill cipher. This expository article includes a dis-

cussion of  the mathematical framework and implementation of  

the cipher, as well as examples, a method of  plaintext attack, and 

Python code for the Hill cipher.

1. Foundations of Cryptography

Oftentimes, we interchangeably use the words cryptography, cryp-

tology, and cryptoanalysis. Nevertheless, these terms have different 

meanings. Cryptography deals with the techniques essential for 

data protection over communication systems; cryptology is the 

general term given to the study of  communication over unpro-

tected channels; cryptoanalysis is the process of  breaking secure 

communication systems (for example, frequency analysis). See [9] 

for further details.

To introduce some standard concepts and terminology, let 
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us assume that we have two people, Lin and Al, who are sharing 

messages using an encryption method. In our story, Lin needs to 

securely send a message to Al. The message Lin is going to send 

to Al is called the plaintext. To securely send this message, Lin will 

use a key to encode, or encrypt, the plaintext. This key is a piece of  

information, sometimes a number, a string of  characters, or a ma-

trix, which encodes the plaintext using an encryption algorithm. 

The encoded message is called the ciphertext. Lin then sends this 

ciphertext over public or unsecured channels. Al receives this ci-

phertext and then uses a key to privately decode, or decrypt, the 

ciphertext back into the original plaintext message using a decryp-

tion algorithm.

To illustrate these ideas, we briefly describe one of  the sim-

plest – and perhaps one of  the earliest – encryption algorithms 

known: the Caesar cipher. Developed around 100 BC, the Caesar 

cipher was used by Julius Caesar to send secret messages to his 

generals in the field. With this method, Lin and Al associate to 

every letter of  the alphabet the corresponding number: a corre-

sponds to 0, b corresponds to 1, and so on, all the way to z, which 

corresponds to 25. The Caesar cipher key, a whole number be-

tween 0 and 25 (inclusive), is privately agreed upon between Lin 

and Al before any encoding. Lin chooses this number to be 5, her 

favorite season of  The Simpsons, and secretly shares this choice with 

Al. Then Lin and Al are separated to opposite ends of  the bat-

tlefield. The following morning, Lin takes her plaintext message, 

which reads attack, and replaces every letter with the corresponding 

number, yielding the array of  numbers [0, 19, 19, 0, 2, 10]. Then 

Lin encrypts the message by adding the preselected key, the num- 

ber 5, to each number in the array to yield [5, 24, 24, 5, 7, 15]. This 

is translated into the ciphertext FYYFHP. This ciphertext is carried 

by a brave soldier across the battlefield. Although the ciphertext 

may be easily intercepted, any prying eyes do not have access to 

the key, and so they are unable to read it. When Al receives the 
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message, they convert the ciphertext into numbers, apply the key 

to these numbers by subtracting 5, and convert the shifted num-

bers back into the original message, attack.

The Caesar cipher is an example of  private key cryptog-

raphy, where the key used to encrypt and decrypt the message 

is known only to the sender and receiver. The Caesar cipher is 

also an example of  symmetric key cryptography because both the 

sender and receiver use the same private key. Public key cryptog-

raphy, in contrast, uses a public and a private key. In this case, a 

public key is known to everyone, and it is used to convert plain-

text to ciphertext. The receiver then uses a distinct private key 

to decode the ciphertext. The most prominent and widely used 

public key cryptography system today is RSA named after its in-

ventors Rivest, Shamir, and Adleman. RSA uses very large prime 

numbers to create public keys and leverages the computational 

difficulty of  factoring large numbers. Further discussion of  pub-

lic key cryptography and this particular algorithm is beyond the 

scope of  this paper. See [9] for further details.

We return to our discussion of  (symmetric) private key cryp-

tography (where the sender and receiver share the same secret key) 

and describe some particular types of  encryption algorithms in 

this category.

The Caesar cipher is just one example of  a substitution ci-

pher, in which letters of  the alphabet, represented by the numbers 

0 through 25, are ‘scrambled’ according to a fixed permutation 

– or reordering – of  those numbers. Although simple to imple-

ment, these ciphers are easily broken by using frequency counts 

of  letters. There are more sophisticated methods for producing 

this ‘scrambling’. This includes the affine cipher, which uses an af-

fine linear transformation to scramble the letters of  the alphabet. 

Another example is the well-known Enigma Machine. It was used 

by Nazi Germany in WWII and cracked by allied forces.

Another class of  encryption methods relies on a block cipher 
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algorithm. Block ciphers are any encryption method that receives 

all blocks of  characters of  fixed block size and produces an output 

of  encrypted blocks. Well-known block encryption methods in-

clude the Vigenère cipher, the Playfair cipher, the ADFGX cipher, 

and the Hill cipher. We focus on the Hill cipher for the remainder 

of  this paper.

Lester Hill, an American mathematician and educator, in-

vented the encryption method that now bears his name in 1929. 

See [3, 4] for further details. Hill’s method uses elementary meth-

ods in modular arithmetic and linear algebra. The Hill cipher “…

seems never to have been used much in practice. Its significance 

is that it was perhaps the first time that algebraic methods (linear 

algebra and modular arithmetic) were used in cryptography in an 

essential way.” [9] 

Figure 1

Hill cipher Machine
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2. Mathematical formalism 

2.1 Modular Arithmetic
Careful readers may have noticed one possible flaw in our earlier description of  the Caesar cipher. 

The algorithm instructs the parties involved, Lin and Al, to establish a secret key – a single number 

to shift the letters of  the alphabet forward when encoding and backward when decoding. But, what 

happens if  the shift pushes the numerical value of  a letter over 25? For example, the letter x is re-

placed by 23. If  we shift by Lin and Al’s secret key of  5, we obtain 28 – and this number does not 
correspond to any letter of  our alphabet. The simple solution is to take the remainder of  28 when 

divided by 25. The letter x encodes as 3. In this way, we can shift every letter of  the alphabet. This 

process of  taking remainders and carrying out numerical computations is formalized in mathemat-

ics with modular arithmetic. Modular arithmetic is essential in almost all cryptographic methods 

that convert plaintext to numbers and apply algebraic tools to encode this numerical data. We de-

scribe few basic definitions and properties of  integer arithmetic here.

First, we define the greatest common divisor of  two positive integers, m and n, denoted  

gcd(m, n), to be the largest integer that divides both m and n. For example, we have gcd(6, 8) = 2 

and gcd(3, 14) = 1. Next, let us fix an integer d > 1. For any integer n, the Division Algorithm guar-

antees that we can always find unique integers q and r, where 0 ≤ r < d, such that

A proof  of  this result can be found in [7]. We call q the quotient and r the remainder when n is 

divided by d. This result guarantees that division of  any integer by d results in a unique remainder 

between 0 and d ‒ 1. For example, let d = 7 and divide a few numbers by d:

With a divisor d fixed, we say that two integers m and n are congruent mod d, written m ≡ n mod d, 

if  they have the same remainder when divided by d. For the following examples, we again fix d = 7:

d > 1. For any integer n, the Division Algorithm guarantees that we can always find unique integers q and r, where

0 ≤ r < d, such that

n = qd+ r.

A proof of this result can be found in [7]. We call q the quotient and d the remainder when n is divided by d. This

result guarantees that division of any integer by d results in a unique remainder between 0 and d− 1. For example, let

d = 7 and divide a few numbers by d:

13 = 1 · 7 + 6, and so 13 has a remainder of 6 when divided by 7.
6 = 0 · 7 + 6, and so 6 has a remainder of 6 when divided by 7.

−78 = (−12) · 7 + 6, and so -78 has a remainder of 6 when divided by 7.

With a divisor d fixed, we say that two integers m and n are congruent mod d, written m ≡ n mod d, if they have the

same remainder when divided by d. For the following examples, we again fix d = 7:

13 ≡ 6 mod 7, because 13 and 6 both have a remainder of 6 when by divided by 7.
−6 ≡ 1 mod 7, because -6 and 1 both have a remainder of 1 when by divided by 7.
12 ≡ 96 mod 7, because 12 and 96 both have a remainder of 5 when divided by 7.

We provide a few elementary but important results in modular arithmetic here; see [7] for further discussion and details.

Theorem 1. Let d > 1.

1) If r ≡ s mod d and u ≡ v mod d, then r + u ≡ s+ v mod d, and ru ≡ sv mod d.

2) Let 0 ≤ r, s < d. Then r ≡ s mod d if and only if r = s.

Here is an example to illustrate part 1). Let’s take d = 7, and for brevity we write r ≡ s if r ≡ s mod 7. Now let

us take the product of the two integers 13 and −6 and reduce mod 7: 13 · (−6) = −78 ≡ 6. Since 13 ≡ 6 and

−6 ≡ 1, we could also write 13 · (−6) ≡ 6 · 1 = 6 ≡ 6. All of this just says that we can add and multiply integers

mod d. Reducing our sums or products along the way at any step and the result will always be the same mod d. Part

2) of the Theorem says that any integer is equivalent to exactly one integer from the set {0, 1, . . . , d− 1}, mod d. This

number is just its remainder. For example, with a modulus of d = 7, 13 is congruent to one and only one integer from

the set {0, 1, 2, 3, 4, 5, 6}. The fact that this can be done uniquely will be important in the next section. We will refer

to replacing any integer by its equivalent unique remainder as ‘reduction mod d’.

Standard arithmetic of real numbers has a well-known property: if r is a nonzero number, we can always multiply
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0 ≤ r < d, such that
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A proof of this result can be found in [7]. We call q the quotient and d the remainder when n is divided by d. This
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We provide a few elementary but important results in modular arithmetic here; see [7] for further 

discussion and details.

Theorem 1. Let d > 1.

	1) If  r ≡ s mod d and u ≡ v mod d, then r + u ≡ s + v mod d, and ru ≡ sv mod d.

2) Let 0 ≤ r, s < d. Then r ≡ s mod d if  and only if  r = s.
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For the sum, 13 + (–6) ≡ 6 + 1 = 7 ≡ 7. All of  this just says that we can add and mul-

tiply integers mod d. Reducing our sums or products along the way at any step and the result 

will always be the same mod d. Part 2) of  the Theorem says that any integer is equivalent to 

exactly one integer from the set {0, 1, . . . , d – 1}, mod d. This number is just its remainder.  
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will refer to replacing any integer by its equivalent unique remainder as ‘reduction mod d ’.

Standard arithmetic of  real numbers has a well-known property: if  r is a nonzero number, 

we can always multiply by (1/r) to get 1. For example, 6 · (1/6) = 1, and (–1/5) · (–5) = 1. We 

say that 1/r is the multiplicative inverse of  r (and vice versa), and we write 1/r = r –1. So, 6 and 1/6 

are multiplicative inverses of  each other, and so again for –1/5 and –5. We encounter multiplica-

tive inverses in modular arithmetic as well. If  the product ab of  two integers a and b is congruent 

mod d, we say that b is the modular inverse of  a (and vice versa). To illustrate, let’s use the modulus  

d = 7 again. Since

we say that the modular inverse of  3 is 5 (and vice versa). However, unlike (regular) inverses of  non-

zero numbers, an integer does not necessarily have a modular inverse mod d. For example, if  our 

modulus is d = 4, there is no integer k such that 2 · k ≡ 1 mod 4; that is, 2 has no modular inverse 

mod 4. This is because just 2 · k is a multiple of  2, and multiples of  2 can only ever have remainders 

of  0 or 2 when divided by 4. Nevertheless, there is an easy way to determine if  an integer n has a 

modular inverse mod d, given by the following result, which is obtained by an application of  the 

Euclidean Algorithm: 

and b is congruent mod d, we say that b is the modular inverse of a (and vice versa). To illustrate, let’s use the modulus

d = 7 again. Since

3 · 5 = 15 ≡ 1 mod 7,

we say that the modular inverse of 3 is 5 (and vice versa). However, unlike (regular) inverses of nonzero numbers,

an integer does not necessarily have a modular inverse mod d. For example, if our modulus is d = 4, there is no

integer k such that 2 · k ≡ 1 mod 4; that is, 2 has no modular inverse mod 4. This is because just 2 · k is a multiple

of 2, and multiples of 2 can only ever have remainders of 0 or 2 when divided by 4. Nevertheless, there is an easy

way to determine if an integer n has a modular inverse mod d, given by the following result, which is obtained by an

application of the Euclidean Algorithm:

Theorem 2. Let d > 1. An integer k has a modular inverse mod d if and only if gcd(d, k) = 1.

See [7] for details. (Note: two integers d, k satisfying the property gcd(d, k) = 1 are said to be relatively prime, and

we will use this terminology). Modular inverses allow us to write some fractions as integers, mod d. If we take d = 7

for our modulus, then 5 is guaranteed to have an inverse mod 7, since gcd(5, 7) = 1. By an exhaustive search through

the remainders {0, 1, 2, 3, 4, 5, 6} of 7, we can find that 5 · 3 = 15 ≡ 1 mod 7. Hence, the modular inverse of 5 is 3.

This allows us to write 1
5 = 5−1 ≡ 3 mod 7. We will use this property of modular inverses below, when we define the

modular inverse of a matrix.

2.2 Matrices and matrix algebra

Let m and n be positive integers. An m× n matrix is a rectangular array




a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n

...
...

...
...

am1 am2 am3 . . . amn




in which each entry, aij , of the matrix is a real number1 (we also refer to aij as the (i, j) entry). An m× n matrix has

m rows and n columns. Matrices are usually denoted by capital letters. For our applications, we are interested only in

square matrices where m = n; i.e., where the number of rows and columns are the same. A 2× 2 square matrix looks

like

a11 a12
a21 a22



1Matrices can also be constructed with other kinds of numbers for these entries, such as the complex numbers, the quaternions, and elements of
finite fields, to name a few. However, these will not be needed here.
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where a11, a12, a21, and a22 are numbers. Matrices can be multiplied together. This method of multiplication needs to

be described. First suppose A is a 1× n matrix and B is an n× 1 matrix:

A =

a1 a2 · · · an


, B =




b1
b2
...
bn


 .

We call A a row matrix and B a column matrix. Then the product AB of these two matrices is obtained by multiplying

all corresponding entries, and adding all of these products: AB = a1b1 + a2b2 + · · ·+ anbn. For example,

if A =

2 3 0 4


and B =



−1
5

−2
3


 , AB = 2 · (−1) + 3 · 5 + 0 · (−2) + 4 · 3 = 25.

Now let A be an m×n matrix and B an n× q matrix (Note: we require the number of rows of B and columns of A to

be equal). Then the matrix product AB is the m× q matrix whose (i, j) entry is the matrix product of the ith row of A

and the jth column of B, as defined above. We illustrate with an example. Let C =


1 3
2 0


and D =


−1 4
2 −3


.

Then the product of C and D is the 2× 2 matrix

CD =


1 · (−1) + 3 · 2 1 · 4 + 3 · (−3)
2 · (−1) + 0 · 2 2 · 4 + 0 · (−3)


=


5 −5

−2 8


.

While multiplication of real numbers is commutative, matrix multiplication is not commutative. In general, AB ̸= BA

(although there are exceptions). The reader is encouraged to multiply the above 2 × 2 matrices C and D in the order

DC to verify this.

Of special interest is the n× n matrix In, with entries of 1 down the main diagonal and 0 in all other entries. For

example, we have

I3 =



1 0 0
0 1 0
0 0 1


 .

We call I3 the 3 × 3 identity matrix because if we multiply it by any other 3 × 3 matrix A, we have AI3 = I3A = A

(as the reader should check). In general, we call In the n × n identity matrix. We can think of In as acting like the

number 1, at least when it comes to multiplication of square matrices. If we have two square matrices A and B such

that AB = In, we say that B is the inverse of A (written B = A−1), and that A is the inverse of B (written A = B−1).

6
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A =
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
, B =




b1
b2
...
bn


 .

We call A a row matrix and B a column matrix. Then the product AB of these two matrices is obtained by multiplying
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and the jth column of B, as defined above. We illustrate with an example. Let C =


1 3
2 0


and D =


−1 4
2 −3


.

Then the product of C and D is the 2× 2 matrix

CD =


1 · (−1) + 3 · 2 1 · 4 + 3 · (−3)
2 · (−1) + 0 · 2 2 · 4 + 0 · (−3)


=


5 −5

−2 8


.

While multiplication of real numbers is commutative, matrix multiplication is not commutative. In general, AB ̸= BA

(although there are exceptions). The reader is encouraged to multiply the above 2 × 2 matrices C and D in the order

DC to verify this.

Of special interest is the n× n matrix In, with entries of 1 down the main diagonal and 0 in all other entries. For

example, we have

I3 =



1 0 0
0 1 0
0 0 1


 .

We call I3 the 3 × 3 identity matrix because if we multiply it by any other 3 × 3 matrix A, we have AI3 = I3A = A

(as the reader should check). In general, we call In the n × n identity matrix. We can think of In as acting like the

number 1, at least when it comes to multiplication of square matrices. If we have two square matrices A and B such

that AB = In, we say that B is the inverse of A (written B = A−1), and that A is the inverse of B (written A = B−1).

6

where a11, a12, a21, and a22 are numbers. Matrices can be multiplied together. This method of multiplication needs to

be described. First suppose A is a 1× n matrix and B is an n× 1 matrix:

A =

a1 a2 · · · an


, B =




b1
b2
...
bn


 .

We call A a row matrix and B a column matrix. Then the product AB of these two matrices is obtained by multiplying

all corresponding entries, and adding all of these products: AB = a1b1 + a2b2 + · · ·+ anbn. For example,

if A =

2 3 0 4


and B =



−1
5

−2
3


 , AB = 2 · (−1) + 3 · 5 + 0 · (−2) + 4 · 3 = 25.

Now let A be an m×n matrix and B an n× q matrix (Note: we require the number of rows of B and columns of A to

be equal). Then the matrix product AB is the m× q matrix whose (i, j) entry is the matrix product of the ith row of A

and the jth column of B, as defined above. We illustrate with an example. Let C =


1 3
2 0


and D =


−1 4
2 −3


.

Then the product of C and D is the 2× 2 matrix

CD =


1 · (−1) + 3 · 2 1 · 4 + 3 · (−3)
2 · (−1) + 0 · 2 2 · 4 + 0 · (−3)


=


5 −5

−2 8


.

While multiplication of real numbers is commutative, matrix multiplication is not commutative. In general, AB ̸= BA

(although there are exceptions). The reader is encouraged to multiply the above 2 × 2 matrices C and D in the order

DC to verify this.

Of special interest is the n× n matrix In, with entries of 1 down the main diagonal and 0 in all other entries. For

example, we have

I3 =



1 0 0
0 1 0
0 0 1


 .

We call I3 the 3 × 3 identity matrix because if we multiply it by any other 3 × 3 matrix A, we have AI3 = I3A = A

(as the reader should check). In general, we call In the n × n identity matrix. We can think of In as acting like the

number 1, at least when it comes to multiplication of square matrices. If we have two square matrices A and B such

that AB = In, we say that B is the inverse of A (written B = A−1), and that A is the inverse of B (written A = B−1).

6

where a11, a12, a21, and a22 are numbers. Matrices can be multiplied together. This method of multiplication needs to

be described. First suppose A is a 1× n matrix and B is an n× 1 matrix:

A =

a1 a2 · · · an


, B =




b1
b2
...
bn


 .

We call A a row matrix and B a column matrix. Then the product AB of these two matrices is obtained by multiplying

all corresponding entries, and adding all of these products: AB = a1b1 + a2b2 + · · ·+ anbn. For example,

if A =

2 3 0 4


and B =



−1
5

−2
3


 , AB = 2 · (−1) + 3 · 5 + 0 · (−2) + 4 · 3 = 25.

Now let A be an m×n matrix and B an n× q matrix (Note: we require the number of rows of B and columns of A to

be equal). Then the matrix product AB is the m× q matrix whose (i, j) entry is the matrix product of the ith row of A

and the jth column of B, as defined above. We illustrate with an example. Let C =


1 3
2 0


and D =


−1 4
2 −3


.

Then the product of C and D is the 2× 2 matrix

CD =


1 · (−1) + 3 · 2 1 · 4 + 3 · (−3)
2 · (−1) + 0 · 2 2 · 4 + 0 · (−3)


=


5 −5

−2 8


.

While multiplication of real numbers is commutative, matrix multiplication is not commutative. In general, AB ̸= BA

(although there are exceptions). The reader is encouraged to multiply the above 2 × 2 matrices C and D in the order

DC to verify this.

Of special interest is the n× n matrix In, with entries of 1 down the main diagonal and 0 in all other entries. For

example, we have

I3 =



1 0 0
0 1 0
0 0 1


 .

We call I3 the 3 × 3 identity matrix because if we multiply it by any other 3 × 3 matrix A, we have AI3 = I3A = A

(as the reader should check). In general, we call In the n × n identity matrix. We can think of In as acting like the

number 1, at least when it comes to multiplication of square matrices. If we have two square matrices A and B such

that AB = In, we say that B is the inverse of A (written B = A−1), and that A is the inverse of B (written A = B−1).

6

For example, the reader can verify the following:

for E =

[
5 2

−7 −3

]
and F =

[
3 2

−7 −5

]
, we have EF =

[
1 0
0 1

]
= FE.

So, we can write E = F−1 and F = E−1.

While any nonzero real number has a multiplicative inverse (for example, 2 · (1/2) = 1), many nonzero square

matrices do not have an inverse. In this case, we say that a matrix is not invertible. For example, we leave it to the

reader to verify that any 2× 2 matrix with a single row of all 0’s cannot have an inverse. An invertible matrix, on the

other hand, is a square matrix which does have an inverse.

For example, we can see that the matrices C and D in the example above are both invertible matrices. With these

definitions and properties at hand, we are faced with two important questions: how do we know which square matrices

are invertible, and, if a matrix is invertible, how do we find an inverse for it? We give a partial answer to both questions

in the following section.

2.3 The determinant of a matrix
For any 2× 2 matrix A, we will compute a number called its determinant, denoted det(A):

if A =

[
a b
c d

]
, det(A) := ad− bc.

That’s easy enough to calculate, but what’s the use in doing so? For our purposes, the most important property of the

determinant is the following theorem.

Theorem 3. Let A =

[
q r
s t

]
. Then

1) A is invertible if and only if det(A) ̸= 0, and

2) if A is invertible, A−1 = 1
det(A)

[
t −r

−s q

]
.

The theorem above provides a way to find the inverse of square matrices of size 2. What about square matrices of size

> 2? These matrices also have a determinant, and part 1) of the above theorem remains true. Calculating the inverse

of such a matrix becomes computationally lengthy as n gets larger and larger. The reader is referred to any standard

reference on linear algebra, such as [5], for a comprehensive treatment of matrix inverses and determinants, including

standard algorithms for finding the determinant of any n× n matrix.
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and we will call such a matrix an integer matrix. For this section, we fix a modulus d > 1. We can 

carry out matrix multiplication and find matrix inverses, working entirely with the integers k rang-

ing from 0 to d − 1. If  A and B are two matrices, we will write A ≡ B mod d if  the corresponding 

entries of  A and B are congruent mod d. For example, if  d = 7, then

We say that an n × n integer matrix A has a modular inverse mod d if  there is an integer matrix 

B such that AB ≡ In mod d. If  so, we say that A is invertible mod d. It is possible for an n × n integer 

matrix to have an inverse, but fail to be invertible mod d – as this example shows: let d = 4 and 

2.4 The modular inverse of a matrix

We combine the ideas of the preceding sections to define modular equivalence and the modular inverse of a matrix.

From this point onward, we are interested mainly in matrices with integer entries, and we will call such a matrix an

integer matrix. For this section, we fix a modulus d > 1. We can carry out matrix multiplication and find matrix

inverses, working entirely with the integers k ranging from 0 to d − 1. If A and B are two matrices, we will write

A ≡ B mod d if the corresponding entries of A and B are congruent mod d. For example, if d = 7, then



−1 5 9
0 7 −21
8 22 50


 ≡



6 5 2
0 0 0
1 1 1


 mod 7.

We say that an n × n integer matrix A has a modular inverse mod d if there is an integer matrix B such that AB ≡

In mod d. If so, we say that A is invertible mod d. It is possible for an n × n integer matrix to have an inverse, but

fail to be invertible mod d - as this example shows: let d = 4 and A =


2 2
2 4


. Then by Theorem 3, A is invertible,

because det(A) = 2 · 4− 2 · 2 ̸= 0. We cannot produce any integer matrix B satisfying AB ≡ I2 mod 4, because the

entries of any product AB will always be even numbers. So, the diagonal entries will never be congruent to 1 mod 4.

Fortunately, the criterion that tells us when a matrix is invertible mod d is known:

Theorem 4. Let A be an n× n matrix. Then A is invertible mod d if and only if gcd(d, det(A)) = 1.

Proof. We give a partial proof for the case n = 2. Let A =


q r
s t


. For brevity we will write x ≡ y if x ≡ y mod d.

Assume gcd(d, det(A)) = 1. By Theorem 2, det(A) is invertible mod d. Then we let

e ≡ det(A)−1 · t, f ≡ det(A)−1 · (−r), g ≡ det(A)−1 · (−s), and h ≡ det(A)−1 · q.

Now if we let C =


e f
g h


, a verification (using Theorem 1) shows that AC ≡ I2 ≡ CA mod d. The other direction,

proving that gcd(d, det(A)) = 1 if A has a modular inverse, is left to the reader.

Here is an example: let d = 5, and A =


3 1
3 4


. Then det(A) = 3 · 4− 1 · 3 = 9. Since det(A) ̸= 0, A has an

inverse, given by

A−1 =
1

9


4 −1

−3 3


= 9−1


4 −1

−3 3


=


4 · 9−1 (−1) · 9−1

(−3) · 9−1 3 · 9−1


.

Since 5 and 9 are relatively prime, A also has a modular inverse, which can be obtained by reducing all entries of A−1

mod 5. To do this, we use the fact that 4 is the modular inverse of 9 mod 5, because 9 · 4 = 36 ≡ 1 mod 5.
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Theorem 4. Let A be an n× n matrix. Then A is invertible mod d if and only if gcd(d, det(A)) = 1.

Proof. We give a partial proof for the case n = 2. Let A =


q r
s t


. For brevity we will write x ≡ y if x ≡ y mod d.

Assume gcd(d, det(A)) = 1. By Theorem 2, det(A) is invertible mod d. Then we let

e ≡ det(A)−1 · t, f ≡ det(A)−1 · (−r), g ≡ det(A)−1 · (−s), and h ≡ det(A)−1 · q.

Now if we let C =


e f
g h


, a verification (using Theorem 1) shows that AC ≡ I2 ≡ CA mod d. The other direction,

proving that gcd(d, det(A)) = 1 if A has a modular inverse, is left to the reader.

Here is an example: let d = 5, and A =


3 1
3 4


. Then det(A) = 3 · 4− 1 · 3 = 9. Since det(A) ̸= 0, A has an

inverse, given by

A−1 =
1

9


4 −1

−3 3


= 9−1


4 −1

−3 3


=


4 · 9−1 (−1) · 9−1

(−3) · 9−1 3 · 9−1


.

Since 5 and 9 are relatively prime, A also has a modular inverse, which can be obtained by reducing all entries of A−1

mod 5. To do this, we use the fact that 4 is the modular inverse of 9 mod 5, because 9 · 4 = 36 ≡ 1 mod 5.
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all entries of  A−1 mod 5. To do this, we use the fact that 4 is the modular inverse of  9 mod 5, because 

9 · 4 = 36 ≡ 1 mod 5. Therefore, we can write 9−1 ≡ 4 mod 5, and we have

Hence, a modular inverse for A is 

Therefore, we can write 9−1 ≡ 4 mod 5, and we have

A−1 =

[
4 · 9−1 (−1) · 9−1

(−3) · 9−1 3 · 9−1

]
≡

[
4 · 4 4 · 4
2 · 4 3 · 4

]
=

[
16 16
8 12

]
≡

[
1 1
3 2

]
mod 5.

Hence, a modular inverse for A is C =

[
1 1
3 2

]
. The reader should check that

[
3 1
3 4

]
·
[
1 1
3 2

]
≡

[
1 0
0 1

]
mod 5 .

For our applications to the Hill cipher, here is the important property of matrix A with a modular inverse. The proof

follows from the definition of the modular inverse.

Theorem 5. Let A be an n× n with gcd(d, det(A)) = 1, and let B be its modular inverse mod d. Let u be an n× 1

column matrix. Then u ≡ BAu mod d.

3 Hill cipher implementation with modular arithmetic and matrix algebra

With the mathematical foundations of modular arithmetic and matrix algebra in place, we are ready to describe the

implementation of the Hill cipher. We will see that the Hill cipher is a block cipher: after a plaintext message is

converted into a sequence of integers (from 0 to 25), this sequence is partitioned into blocks of predetermined length

and these blocks are encrypted one at a time.

We begin the process of encryption by choosing a block size n and then a key. Recall that the key for the Caesar

cipher consists of a single integer which we used to ‘shift’ our message. For the Hill cipher, our key will be an n × n

matrix which is invertible mod 26. From now on, we fix our modulus to be 26 because this is the number of letters in

the English alphabet. We require the condition of invertibility so that our encrypted message can be decrypted later.

We will soon see why and how this works.

3.1 Setting up the plaintext

The next step is to convert the letters of our plaintext message to their corresponding values as shown in Table 1 below,

where a corresponds to 0, b to 1, and so on, up to z, which corresponds to 25.

a b c d e f g h i j k l m
0 1 2 3 4 5 6 7 8 9 10 11 12

n o p q r s t u v w x y z
13 14 15 16 17 18 19 20 21 22 23 24 25

Table 1: English alphabet assigned to numeric values
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matrix key. For example, if we choose a block size of 4, our plaintext message will be converted into a sequence of

9

. One can check that 

Therefore, we can write 9−1 ≡ 4 mod 5, and we have

A−1 =

[
4 · 9−1 (−1) · 9−1

(−3) · 9−1 3 · 9−1

]
≡

[
4 · 4 4 · 4
2 · 4 3 · 4

]
=

[
16 16
8 12

]
≡

[
1 1
3 2

]
mod 5.

Hence, a modular inverse for A is C =

[
1 1
3 2

]
. The reader should check that

[
3 1
3 4

]
·
[
1 1
3 2

]
≡

[
1 0
0 1

]
mod 5 .

For our applications to the Hill cipher, here is the important property of matrix A with a modular inverse. The proof

follows from the definition of the modular inverse.

Theorem 5. Let A be an n× n with gcd(d, det(A)) = 1, and let B be its modular inverse mod d. Let u be an n× 1

column matrix. Then u ≡ BAu mod d.

3 Hill cipher implementation with modular arithmetic and matrix algebra

With the mathematical foundations of modular arithmetic and matrix algebra in place, we are ready to describe the

implementation of the Hill cipher. We will see that the Hill cipher is a block cipher: after a plaintext message is

converted into a sequence of integers (from 0 to 25), this sequence is partitioned into blocks of predetermined length

and these blocks are encrypted one at a time.

We begin the process of encryption by choosing a block size n and then a key. Recall that the key for the Caesar

cipher consists of a single integer which we used to ‘shift’ our message. For the Hill cipher, our key will be an n × n

matrix which is invertible mod 26. From now on, we fix our modulus to be 26 because this is the number of letters in

the English alphabet. We require the condition of invertibility so that our encrypted message can be decrypted later.

We will soon see why and how this works.

3.1 Setting up the plaintext

The next step is to convert the letters of our plaintext message to their corresponding values as shown in Table 1 below,

where a corresponds to 0, b to 1, and so on, up to z, which corresponds to 25.

a b c d e f g h i j k l m
0 1 2 3 4 5 6 7 8 9 10 11 12

n o p q r s t u v w x y z
13 14 15 16 17 18 19 20 21 22 23 24 25

Table 1: English alphabet assigned to numeric values

Then this sequence of integers is blocked into column matrices with a row size that matches the size of the encryption

matrix key. For example, if we choose a block size of 4, our plaintext message will be converted into a sequence of

9

For our applications to the Hill cipher, here is the important property of  matrix A with a mod-

ular inverse. The proof  follows from the definition of  the modular inverse.

Theorem 5. Let A be an n × n matrix with gcd(d, det(A)) = 1, and let B be its modular inverse 

mod d. Let u be an n × 1 column matrix. Then u ≡ BAu mod d.

3. Hill cipher implementation with modular arithmetic and matrix algebra

With the mathematical foundations of  modular arithmetic and matrix algebra in place, we are 

ready to describe the implementation of  the Hill cipher. We will see that the Hill cipher is a block ci-

pher: after a plaintext message is converted into a sequence of  integers (from 0 to 25), this sequence 

is partitioned into blocks of  predetermined length and these blocks are encrypted one at a time.

We begin the process of  encryption by choosing a block size n and then a key. Recall that the 

key for the Caesar cipher consists of  a single integer which we used to ‘shift’ our message. For the 

Hill cipher, our key will be an n × n matrix which is invertible mod 26. From now on, we fix our 

modulus to be 26 because this is the number of  letters in the English alphabet. We require the con-

dition of  invertibility so that our encrypted message can be decrypted later. We will soon see why 

and how this works.

3.1 Setting Up the Plaintext
The next step is to convert the letters of  our plaintext message to their corresponding values as 

shown in Table 1 below, where a corresponds to 0, b to 1, and so on, up to z , which corresponds to 

25. Then this sequence of  integers is blocked into column matrices with a row size that matches the 

size of  the encryption matrix key. For example, if  we choose a block size of  4, our plaintext message 

Therefore, we can write 9−1 ≡ 4 mod 5, and we have

A−1 =

[
4 · 9−1 (−1) · 9−1

(−3) · 9−1 3 · 9−1

]
≡

[
4 · 4 4 · 4
2 · 4 3 · 4

]
=

[
16 16
8 12

]
≡

[
1 1
3 2

]
mod 5.

Hence, a modular inverse for A is C =

[
1 1
3 2

]
. The reader should check that

[
3 1
3 4

]
·
[
1 1
3 2

]
≡

[
1 0
0 1

]
mod 5 .

For our applications to the Hill cipher, here is the important property of matrix A with a modular inverse. The proof

follows from the definition of the modular inverse.

Theorem 5. Let A be an n× n with gcd(d, det(A)) = 1, and let B be its modular inverse mod d. Let u be an n× 1

column matrix. Then u ≡ BAu mod d.

3 Hill cipher implementation with modular arithmetic and matrix algebra

With the mathematical foundations of modular arithmetic and matrix algebra in place, we are ready to describe the

implementation of the Hill cipher. We will see that the Hill cipher is a block cipher: after a plaintext message is

converted into a sequence of integers (from 0 to 25), this sequence is partitioned into blocks of predetermined length

and these blocks are encrypted one at a time.

We begin the process of encryption by choosing a block size n and then a key. Recall that the key for the Caesar

cipher consists of a single integer which we used to ‘shift’ our message. For the Hill cipher, our key will be an n × n

matrix which is invertible mod 26. From now on, we fix our modulus to be 26 because this is the number of letters in

the English alphabet. We require the condition of invertibility so that our encrypted message can be decrypted later.

We will soon see why and how this works.

3.1 Setting up the plaintext

The next step is to convert the letters of our plaintext message to their corresponding values as shown in Table 1 below,

where a corresponds to 0, b to 1, and so on, up to z, which corresponds to 25.

a b c d e f g h i j k l m
0 1 2 3 4 5 6 7 8 9 10 11 12

n o p q r s t u v w x y z
13 14 15 16 17 18 19 20 21 22 23 24 25

Table 1: English alphabet assigned to numeric values

Then this sequence of integers is blocked into column matrices with a row size that matches the size of the encryption

matrix key. For example, if we choose a block size of 4, our plaintext message will be converted into a sequence of

9

Table 1  

English alphabet  
assigned to numeric values.



72  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

will be converted into a sequence of  integers, and these integers will be partitioned into blocks of  

length 4. These length-4 blocks will then be used as the entries in a sequence of  4 × 1 column ma-

trices. To illustrate, if  our sequence of  integers is {b1, b2, . . . , b16}, then we obtain the four column 

vectors v1, v2, v3, v4:

In this illustration, it looks like there was a fortunate coincidence – the length of  our text string of  

16 characters was divisible by our choice of  block size of  4. In general, this will not be the case. The 

standard practice is to add on a single repeated character so that our numerical sequence is divisible 

by the block size. For example, if  our integer sequence had only 13 entries {b1, . . . , b13}, we could 

end it with 3 repetitions of  25, to yield {b1, . . . , b13, 25, 25, 25}. This ‘padding’ will not provide 

any practical obstruction to decoding because the recipient can determine that a long string of  z ’s 

at the end of  the message should be stripped away. With this convention and a block size of  n, we 

can assume that the integer sequence representing our plaintext is always divisible by n – so it will 

look like {b1, b2, . . . , bkn} for some integer k > 0. Here is the partition of  our integer sequence into 

k blocks of  length n, and their corresponding block column matrices: 

3.2 Encryption
Now we have a block size (n), and a sequence of  blocks: these are our n × 1 column matrices  

v1, . . . , vk, each with n components, representing our plaintext message. The next step is to choose 

a key, and to describe how this key will encrypt our blocks. For the Hill cipher method, our key 

will be an n × n matrix A which is invertible mod 26. To encrypt the first block v1, we will matrix 

integers, and these integers will be partitioned into blocks of length 4. These length-4 blocks will then be used as the

entries in a sequence of 4 × 1 column matrices. To illustrate, if our sequence of integers is {b1, b2, . . . , b16}, then we

obtain the four column vectors v1,v2,v3,v4:

v1

��

v2

��

v3

��

v4

��



b1
b2
b3
b4






b5
b6
b7
b8






b9
b10
b11
b12






b13
b14
b15
b16




In this illustration, it looks like there was a fortunate coincidence - the length of our text string of 16 characters was

divisible by our choice of block size of 4. In general, this will not be the case. The standard practice is to add on a single

repeated character so that our numerical sequence is divisible by the block size. For example, if our integer sequence

had only 13 entries {b1, . . . , b13}, we could end it with 3 repetitions of 25, to yield {b1, . . . , b13, 25, 25, 25}. This

‘padding’ will not provide any practical obstruction to decoding because the recipient can determine that a long string

of z’s at the end of the message should be stripped away. With this convention and a block size of n, we can assume

that the integer sequence representing our plaintext is always divisible by n - so it will look like {b1, b2, . . . , bkn} for

some integer k > 0.

Here is the partition of our integer sequence into k blocks of length n, and their corresponding block column matrices:

{ b1, b2, . . . , bn  
1st block

,

��

bn+1, bn+2, . . . , b2n  
2nd block

,

��

. . . , bn(k−1)+1, bn(k−1)+2, . . . , bnk  
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
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



b5
b6
b7
b8






b9
b10
b11
b12






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multiply  v1 on the left by our chosen encryption key matrix A. Then we reduce the entries of  the 
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Since each matrix ui’s entries are reduced mod 26, these integers are between 0 and 25. We ‘back-

wards-replace’ each of  these integers with an alphabet letter: 0 ↦ a, 1 ↦ b, and so on. Here’s the 
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
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replace each letter with its corresponding integer, padding if necessary
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{b1, b2, . . . , bnk}

block these nk integers, n at a time, into k column matrices
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‘unblock’: use column matrix entries to form a sequence of integers
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{u1, u2, . . . , unk}

substitute letters for integers
��

MPWZLDKVNGOQPWSJCNVGZ
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The full encrypted message now consists of  this encrypted sequence of  letters, which we 

call the ciphertext. If  an eavesdropper were to intercept this letter sequence, the original 

message would remain hidden. Our final encrypted message is the last sequence of  letters2, 

MPWZLDKVNGOQPWSJCNVGZ, and it is ready to be shared with the world! We can send 

it in an unsecured email, write it on a postcard, or shout it from a rooftop for all to hear. Without 

the cipher key A, anyone eavesdropping will be unable to ‘reconstruct’ the original block column 

matrices v1, . . . , vk (unless they are clever enough to ‘crack’ the code, but more on this later).

3.3 Decryption
From a distant rooftop, our intended message recipient receives our encrypted sequence of  letters 

on their laptop. Armed with the encryption key matrix A, they are ready to decode the mes-

sage. Since they have the encryption key matrix A, which has been specifically chosen to satisfy  

gcd(d, det(A)) = 1, they are guaranteed to find a modular inverse for A: let us call this modular in-

verse C. The ‘key’ – no pun intended – that allows them to decrypt is the following result.

   

Corollary 1. Let C be the modular inverse of  A, and let the column matrices vi, ei, and ui be given 

as in Section 3.2 above. Let wi be the reduction mod d of  Cui (so all entries of  the column matrix 

wi are integers wj with 0 ≤ wj < d ). Then wi = vi.

Proof. We have

Since wi ≡ Cui, this shows us that wi ≡ vi for all i. Consider v1 and w1, and write

By construction, the entries of  v1 are all integers between 0 and d − 1. Also, the entries of  

w1 are all integers between 0 and d − 1 because these entries have been reduced mod d. So, 

we have b1 ≡ w1, . . . , bn ≡ wn mod d. Since 0 ≤ bi, wj < d, by Theorem 1 we can conclude 

2 This encrypted sequence is entirely random, and is only inserted here for illustrative purposes.
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Then wi = vi.

Proof. We have

Cui ≡ Cei

≡ C(Avi) (Since ei = Avi)

≡ vi (By Theorem 5).

Since wi ≡ Cui, this shows us that wi ≡ vi for all i. Consider v1 and w1, and write

v1 =



b1
...
bn


 , and w1 =



w1

...
wn


 .

By construction, the entries of v1 are all integers between 0 and d− 1. Also, the entries of w1 are all integers between

0 and d − 1 because these entries have been reduced mod d. So, we have b1 ≡ w1, . . . , bn ≡ wn mod d. Since

0 ≤ bi, wj < d, by Theorem 1 we can conclude that bi = wi for all 1 ≤ i ≤ n. Hence, v1 = w1. The same argument

provides vi = wi for all such column matrices.

2This encrypted sequence is entirely random, and is only inserted here for illustrative purposes.

12

The full encrypted message now consists of this encrypted sequence of letters, which we call the ciphertext. If an

eavesdropper were to intercept this letter sequence, the original message would remain hidden. Our final encrypted

message is the last sequence of letters2, MPWZLDKVNGOQPWSJCNVGZ, and it is ready to be shared with the world!

We can send it in an unsecured email, write it on a postcard, or shout it from a rooftop for all to hear. Without the cipher

keyA, anyone eavesdropping will be unable to ‘reconstruct’ the original block column matrices v1, . . . ,vk (unless they

are clever enough to ‘crack’ the code, but more on this later).

3.3 Decryption

From a distant rooftop, our intended message recipient receives our encrypted sequence of letters on their laptop.

Armed with the encryption key matrix A, they are ready to decode the message. Since they have the encryption key

matrix A, which has been specifically chosen to satisfy gcd(d, det(A)) = 1, they are guaranteed to find a modular

inverse for A: let us call this modular inverse C. The ‘key’ - no pun intended - that allows them to decrypt is the

following result.

Corollary 1. Let C be the modular inverse of A, and let the column matrices vi, ei, and ui be given as in Section 3.2

above. Let wi be the reduction mod d of Cui (so all entries of the column matrix wi are integers wj with 0 ≤ wj < d).

Then wi = vi.

Proof. We have

Cui ≡ Cei

≡ C(Avi) (Since ei = Avi)

≡ vi (By Theorem 5).

Since wi ≡ Cui, this shows us that wi ≡ vi for all i. Consider v1 and w1, and write

v1 =



b1
...
bn


 , and w1 =



w1

...
wn


 .

By construction, the entries of v1 are all integers between 0 and d− 1. Also, the entries of w1 are all integers between

0 and d − 1 because these entries have been reduced mod d. So, we have b1 ≡ w1, . . . , bn ≡ wn mod d. Since

0 ≤ bi, wj < d, by Theorem 1 we can conclude that bi = wi for all 1 ≤ i ≤ n. Hence, v1 = w1. The same argument

provides vi = wi for all such column matrices.

2This encrypted sequence is entirely random, and is only inserted here for illustrative purposes.

12



Exploring the Hill Cipher through Linear Algebra and Python  75

that bi = wi for all 1 ≤ i ≤ n. Hence, v1 = w1. The same argument provides vi = wi for all  

such column matrices.

Now the recipient calculates the modular inverse C of  A and takes the following steps (which 

are essentially reversals of  the encryption steps above):

where we have used Corollary 1 for the =⃰⃰ equality.

4. Examples of encryption and decryption using the Hill cipher

Now let’s work out an explicit example. We will choose a plaintext message, fix a block size, build 

an encryption key matrix, encrypt, and decrypt. We return to our collaborators, Lin and Al, from 

Section 1. Lin would like to try to encrypt and send Al a simple message: hello. However, the world 

cannot know this! They choose a block size of  2. Their next step is to find an encryption key matrix.

4.1 Determine an Encryption Key Matrix
Lin needs to find a 2 × 2 integer matrix satisfying the property that gcd(26, det(A)) = 1; i.e., whose 

determinant is relatively prime to 26. Since 17 is relatively prime to 26, they can look for an integer 

matrix 

Now the recipient calculates the modular inverse C of A and takes the following steps (which are essentially reversals

of the encryption steps above):

MPWZLDKVNGOQPWSJCNVGZ

replace each letter with its corresponding integer
��

{u1, u2, . . . , unk}

block these nk integers, n at a time, into k column matrices
��

{u1,u2, . . . ,uk}

multiply each column matrix by decryption key matrix C
��

{Cu1, Cu2, . . . , Cuk}

reduce entries of all matrices Cui mod 26
��

{w1,w2, . . . ,wk}
∗
= {v1,v2, . . . ,vk}

‘unblock’: use column matrix entries to form a sequence of integers
��

{b1, b2, . . . , bnk}

substitute letters for integers
��

attackthecastleatdawn

where we have used Corollary 1 for the ∗
= equality.
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s t

]
such that

det(A) = 17. Finding the entries of A that provide them with this condition is done by solving the equation

qt− rs = det(A) = 17.
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This equation has infinitely many possible solutions, some of  which can be found by writing

Hence, the encryption key matrix can be 

This equation has infinitely many possible solutions, some of which can be found by writing

qt− rs = 17

= 20− 3

= 5 · 4− 3 · 1.

Hence, the encryption key matrix can be A =

[
5 3
1 4

]
. Now that the encryption key matrix has been determined, they

need to set up the plaintext before performing matrix multiplication.

4.2 Convert plaintext into matrices of plain-numbers

The next steps are to convert the message to a sequence of integers and partition this sequence into blocks of size 2.

The length of the message, 5, has a remainder of 1 when divided by the block size 2. So, they add a ‘z’ at the end of

the plaintext to ensure that the plaintext can be partitioned into blocks of length 2. The ‘padded’ plaintext message is

now helloz.

The corresponding integers based on Table 1 would be 7, 4, 11, 11, 14, and 25. With blocks of size 2, they have

the following block matrices representing the plaintext:

v1 =

[
7
4

]
, v2 =

[
11
11

]
, v3 =

[
14
25

]
.

4.3 Multiplying the block matrices vi by the encryption key matrix

Matrix multiplication now gives Lin

e1 := Av1 =

[
5 3
1 4

] [
7
4

]
=

[
(5)(7) + (3)(4)
(1)(7) + (4)(4)

]
=

[
47
23

]
,

e2 := Av2 =

[
5 3
1 4

] [
11
11

]
=

[
(5)(11) + (3)(11)
(1)(11) + (4)(11)

]
=

[
88
55

]
,

e3 := Av3 =

[
5 3
1 4

] [
14
25

]
=

[
(5)(14) + (3)(25)
(1)(14) + (4)(25)

]
=

[
145
114

]
.
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2) ‘unblock’ these matrix entries to provide a string of  integers, and

3) convert each such integer into a letter of  the alphabet.

For example, for the vector e1 whose entries are 47 and 23, Lin needs to reduce each entry mod 26. 

The remainders of  these numbers when divided by 26 are, respectively, 21 and 23. Using the nota-

tion of  the previous section, Lin then has

Unblocking and converting these integers back into letters yields the ciphertext VXKDPK. In a 

grand romantic gesture, Lin hires a skywriting airplane to write this message in the sky over the 

beaches of  Annapolis.

Nursing a hot cocoa by the oceanside, Al sees the message VXKDPK appear in the sky above 

them – and they know what to do. A few days prior, Lin had shared with Al the secret encryption 

key matrix for their communication, unkown to all others – the matrix 

4.4 Convert matrices of cipher-numbers into ciphertext

Conversion of e1, e2, e3 into a ciphertext message takes three steps:

1) reduce each ei mod 26 to obtain three column matrices u1,u2,u3 with entries between 0 and 25,

2) ‘unblock’ these matrix entries to provide a string of integers, and

3) convert each such integer into a letter of the alphabet.

For example, for the vector e1 whose entries are 47 and 23, Lin needs to reduce each entry mod 26. The remainders

of these numbers when divided by 26 are, respectively, 21 and 23. Using the notation of the previous section, Lin then

has

u1 := e1 mod 26 =

[
47
23

]
=

[
21
23

]
, and similarly...

u2 := e2 mod 26 =

[
88
55

]
=

[
10
3

]
,

u3 := e3 mod 26 =

[
145
114

]
=

[
15
10

]
.

Unblocking and converting these integers back into letters yields the ciphertext VXKDPK. In a grand romantic gesture,

Lin hires a skywriting airplane to write this message in the sky over the beaches of Annapolis.

Nursing a hot cocoa by the oceanside, Al sees the message VXKDPK appear in the sky above them - and they know

what to do. A few days prior, Lin had shared with Al the secret encryption key matrix for their communication, unkown

to all others - the matrix A =

[
5 3
1 4

]
.

4.5 Finding the decryption key matrix

Al proceeds by finding the modular inverse of the encryption key matrix A. They first calculate the determinant of

this matrix: det(A) = 5 · 4 − 1 · 3 = 17, and then set out to find the modular inverse of 17. Al can do this using the

Euclidean Algorithm. Or, he can calculate the reduced value of 17 · k mod 26 for all integers k with 0 ≤ k < 26 to

find k such that 17 · k ≡ 1 mod 26. After doing this, Al finds that 17 · 23 = 391 ≡ 1 mod 26, and so the modular

inverse of det(A) is 23.

Next, using this modular inverse and the well-known formula for the inverse of a 2× 2 matrix given in Theorem 3,

Al can find the modular inverse of A:

15

.

4.5 Finding the Decryption Key Matrix
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17 · k mod 26 for all integers k with 0 ≤ k < 26 to find k such that 17 · k ≡ 1 mod 26. After doing 

this, Al finds that 17 · 23 = 391 ≡ 1 mod 26, and so the modular inverse of  det(A) is 23.

Next, using this modular inverse and the well-known formula for the inverse of  a 2 × 2 matrix 

given in Theorem 3, Al can find the modular inverse of  A:

Therefore, Al’s decryption matrix is the modular inverse 

A−1 =
1

17

[
4 −3

−1 5

]
= 17−1

[
4 −3

−1 5

]
=

[
23 · 4 23 · (−3)

23 · (−1) 23 · 5

]
≡

[
92 −69

−23 115

]
≡

[
14 9
3 11

]
mod 26.

Therefore, Al’s decryption matrix is the modular inverse C =

[
14 9
3 11

]
.

4.6 Convert ciphertext into matrices of cipher-numbers

With this decryption matrix C in hand, Al’s next step is to take Lin’s skywritten ciphertext VXKDPK and convert it

into a string of integers. Using our Table 1, Al gets the integer sequence {21, 23, 10, 3, 15, 10}. Al knows that Lin used

blocks of size 2 to encrypt the matrix, since that was the size of their encryption key matrix A. Al uses these integer

entries to write down three column matrices:

u1 =

[
21
23

]
, u2 =

[
10
3

]
, u3 =

[
15
10

]
.

4.7 Multiplying block matrices ui by the decryption key matrix

With this decryption matrix C in hand and carefully concealed from prying eyes, Al now multiplies each encoded

matrix ui by C to reveal the deciphered matrices, and then reduces the result of this multiplication mod 26, as we see

here.

Cu1 =

[
14 9
3 11

] [
21
23

]
=

[
(14)(21) + (9)(23)
(3)(21) + (11)(23)

]
=

[
501
316

]
≡

[
7
4

]
mod 26,

Cu2 =

[
14 9
3 11

] [
10
3

]
=

[
(14)(10) + (9)(3)
(3)(10) + (11)(3)

]
=

[
167
63

]
≡

[
11
11

]
mod 26,

Cu3 =

[
14 9
3 11

] [
15
10

]
=

[
(14)(15) + (9)(10)
(3)(15) + (11)(10)

]
=

[
300
155

]
≡

[
14
25

]
mod 26.

Following the notation used in Section 3, our deciphered and mod 26–reduced column matrices are

w1 =

[
7
4

]
,w2 =

[
11
11

]
,w3 =

[
14
25

]
.

The reader is encouraged to check that Al’s deciphered column matrices w1,w2, and w3 are precisely the column

matrices v1,v2, and v3 written down by Lin in Section 4.2, as guaranteed by Corollary 1. Al can take the integer entries

from these matrices, and write them down in order to obtain the deciphered integer sequence {7, 4, 11, 11, 14, 25}.
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4.6 Convert Ciphertext into Matrices of Cipher-numbers
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]
=

[
(14)(21) + (9)(23)
(3)(21) + (11)(23)

]
=

[
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316

]
≡

[
7
4

]
mod 26,

Cu2 =

[
14 9
3 11

] [
10
3

]
=

[
(14)(10) + (9)(3)
(3)(10) + (11)(3)

]
=

[
167
63

]
≡

[
11
11

]
mod 26,

Cu3 =

[
14 9
3 11

] [
15
10

]
=

[
(14)(15) + (9)(10)
(3)(15) + (11)(10)

]
=

[
300
155

]
≡

[
14
25

]
mod 26.

Following the notation used in Section 3, our deciphered and mod 26–reduced column matrices are

w1 =

[
7
4

]
,w2 =

[
11
11

]
,w3 =

[
14
25

]
.

The reader is encouraged to check that Al’s deciphered column matrices w1,w2, and w3 are precisely the column

matrices v1,v2, and v3 written down by Lin in Section 4.2, as guaranteed by Corollary 1. Al can take the integer entries

from these matrices, and write them down in order to obtain the deciphered integer sequence {7, 4, 11, 11, 14, 25}.
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5. Plaintext attacks on the Hill cipher

As mentioned in Section 1, the Hill cipher is notable for its introduction of  more sophisticated (at 

the time) linear algebraic methods of  encryption. Nevertheless, the method had very limited practi-

cal use. At the time of  its introduction, lack of  computing technology made implementation of  the 

algorithm impractical. Ironically, the development of  computing power sufficient to implement the 

algorithm brought with it enough power to easily attack the cipher.

There are several ways to attack a Hill cipher. For example, if  an eavesdropper intercepts a 

significant amount of  ciphertext, a row-by-row reconstruction of  the encryption key matrix is fea-

sible using statistical methods paired with data on frequencies of  n-grams in the English language 

(See [1] for more details). Another possibility is that an eavesdropper intercepts some ciphertext and 
knows (or suspects) the corresponding plaintext. An attack based upon this data is called a plaintext 

attack. We will focus on such a plaintext attack on the Hill cipher.

A plaintext attack assumes that the eavesdropper has access to part of  the plaintext. In other 

words, the eavesdropper has intercepted the ciphertext and (knows or has suspicions on) the corre-

sponding original plaintext. According to [8], “making a good guess as to how just two letter blocks 

should be decrypted, we can deduce the matrix that will decrypt the entire message.”

Suppose Lin sends Al another encrypted message, which is intercepted by a nosy and clev-

er eavesdropper named Trinity. She intercepts the ciphertext VX KD SO KD GG FY RE. Suppose 

Trinity also knows part of  the original message: the plaintext for the first two blocks VX and KD, 

which are he and ll respectively. Trinity’s goal is to reconstruct the 2 × 2 encryption matrix A used by 

Lin to encode the message. Since Trinity knows that VX decrypted is he, they can replace these  

letters with their corresponding integers to write

Similarly, Trinity knows that KD decrypted is ll, and so they can write

Performing the matrix multiplication between the decryption matrices and the cipher-numbers on 

the left hand side and setting its equivalence to the corresponding row on the right hand side, we 

get following equations:

4.8 Convert deciphered numbers to deciphered text

Al’s final step is just to read off the letters corresponding to these integer, using Table 1 . Doing so Al recovers the

message helloz. The convention of padding the plaintext is well-known to Al, so he strips off the appended ‘z’ to reveal

the deciphered text, Lin’s original message.
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As mentioned in Section 1, the Hill cipher is notable for its introduction of more sophisticated (at the time) linear

algebraic methods of encryption. Nevertheless, the method had very limited practical use. At the time of its introduc-
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Suppose Lin sends Al another encrypted message, which is intercepted by a nosy and clever eavesdropper named

Trinity. She intercepts the ciphertext VX KD SO KD GG FY RE. Suppose Trinity also knows part of the original

message: the plaintext for the first two blocks VX and KD, which are he and ll respectively. Trinity’s goal is to reconstruct

the 2× 2 encryption matrix A =

[
q r
s t

]
used by Lin to encode the message. Since Trinity knows that VX decrypted

is he, they can replace these letters with their corresponding integers to write

[
q r
s t

] [
21
23

]
≡

[
7
4

]
mod 26.

Similarly, Trinity knows that KD decrypted is ll, and so they can write

[
q r
s t

] [
10
3

]
≡

[
11
11

]
mod 26.
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Combining the equations with the same variables, we have the following equations:

These equations can be rewritten as matrix equations. For the equations with variables q and r, 

Trinity obtains

For the equations with variables s and t,

To find the variables q, r, s, and t, Trinity only needs to find the modular inverse of  the matrix 

Performing the matrix multiplication between the decryption matrices and the cipher-numbers on the left hand side and

setting its equivalence to the corresponding row on the right hand side, we get following equations:

(21)(q) + (23)(r) ≡ 7 mod 26

(21)(s) + (23)(t) ≡ 4 mod 26,

(10)(q) + (3)(r) ≡ 11 mod 26

(10)(s) + (3)(t) ≡ 11 mod 26.

Combining the equations with the same variables, we have the following equations:

(21)(q) + (23)(r) ≡ 7 mod 26

(10)(q) + (3)(r) ≡ 11 mod 26

(21)(s) + (23)(t) ≡ 4 mod 26

(10)(s) + (3)(t) ≡ 11 mod 26.

These equations can be rewritten as matrix equations. For the equations with variables q and r, Trinity obtains



21 23

10 3






q

r


 ≡



7

11


 mod 26.

For the equations with variables s and t,



21 23

10 3






s

t


 ≡



4

11


 mod 26.

To find the variables q, r, s, and t, Trinity only needs to find the modular inverse of the matrix

21 23
10 3


(mod 26).

This matrix has determinant 21 · 3 − 23 · 10 = −167. The Euclidean Algorithm can be used to reveal that this

determinant is relatively prime to 26, hence the existence of a modular inverse for this matrix is guaranteed. Note that

−167 ≡ 15 mod 26, and the modular inverse of 15 is 7. Therefore, the method given in the proof of Theorem 5, and

the following example, yields


21 23
10 3

−1

=
−1

167


3 −23

−10 21


=


3 · 7 −23 · 7

−10 · 7 21 · 7


≡


21 −161

−70 147


≡


21 21
8 17


mod 26.
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Trinity can use this modular inverse Trinity can use this modular inverse D =


21 21
8 17


to find the entries q, r, s, and t of Lin’s encryption matrix A:



q

r


 ≡



21 21

8 17






7

11


 ≡



14

9


 mod 26;



s

t


 ≡



21 21

8 17






4

11


 ≡



3

11


 mod 26.

With this calculation, Trinity has recovered the entries of Lin’s original encryption key matrix A: q = 14, r = 9,

s = 3, and t = 11, hence

A ≡



14 9

3 11


 .

Exercise for the reader: Decode the rest of Lin’s message, using the encryption key cracked by Trinity!

6 Coding the Hill cipher in Python

We provide this code as a resource for readers who might be interested in further exploring the Hill cipher and its uses

in other encryption schemes. In this section, we will explain sections of the code and include code cells in the greyed

out enclosures. This section will include all lines of code to run your own Hill cipher in the Python programming

language. This code does not generate new encryption and decryption key matrices. These key matrices were given to

the program. It currently only allows encryption and decryption of the 26 letters of the English alphabet. In each code

cell, comments begin with a hashtag (#) or are enclosed in quotations marks (””), and they are in blue.

1 # impor t numpy l i b r a r y
2 import numpy as np

6.1 Encryption

The determinant of the encryption key matrix has to be relatively prime to 26. The following encryption matrices’

determinants are 17, 3, and 5, are all relatively prime to 26. The following matrices are our encryption keys. With

them, our code can encrypt in blocks of size 2, 3, and 4. The next block of code enters these matrices into the program.

KEY A =


5 3
1 4


,KEY B =



2 5 10
3 5 8
1 2 3


 ,KEY C =



13 3 4 1
24 6 5 1
9 5 5 1
8 3 4 1



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With this calculation, Trinity has recovered the entries of Lin’s original encryption key matrix A: q = 14, r = 9,
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Exercise for the reader: Decode the rest of Lin’s message, using the encryption key cracked by Trinity!

6 Coding the Hill cipher in Python

We provide this code as a resource for readers who might be interested in further exploring the Hill cipher and its uses

in other encryption schemes. In this section, we will explain sections of the code and include code cells in the greyed

out enclosures. This section will include all lines of code to run your own Hill cipher in the Python programming

language. This code does not generate new encryption and decryption key matrices. These key matrices were given to
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The next block of  code enters these matrices into the program.

The following lines allow us to enter the encryption key size that we would like to use to encrypt the 

message. Based on the keys we have, we can type in 2, 3, or 4.

The user is prompted here to enter their plaintext message to be encrypted and decrypted.

The function plaintext below converts letters of  the plaintext to their corresponding values based on 

Table 1. The function removes the spaces, converts all of  the characters in the string to lower case, 

and converts them to their corresponding integer values. 
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1 # Note : Each i n n e r a r ray i s a row o f t h e m a t r i x
2 KEY A= [ [ 5 , 3 ] , [ 1 , 4 ] ]
3 KEY B = [ [ 2 , 5 , 1 0 ] , [ 3 , 5 , 8 ] , [ 1 , 2 , 3 ] ]
4 KEY C = [ [ 1 3 , 3 , 4 , 1 ] , [ 2 4 , 6 , 5 , 1 ] , [ 9 , 5 , 5 , 1 ] , [ 8 , 3 , 4 , 1 ] ]

The following lines allow us to enter the encryption key size that we would like to use to encrypt the message. Based

on the keys we have, we can type in 2, 3, or 4.

1 key = i n t ( input ( ) ) # u s e r i n p u t f o r e n c r y p t i o n key s i z e
2 pr in t ( key )

The user is prompted here to enter their plaintext message to be encrypted and decrypted.

1 message = input ( ) # u s e r i n p u t f o r p l a i n t e x t message
2 pr in t ( message )

The function plaintext below converts letters of the plaintext to their corresponding values based on Table 1. The

function removes the spaces, converts all of the characters in the string to lower case, and converts them to their

corresponding integer values.

1 def p l a i n t e x t ( message ) :
2 ””” Accep t s a p l a i n t e x t message , removes space s and c o n v e r t s t o lower case .

Then c o n v e r t s each c h a r a c t e r t o numer i ca l v a l u e . Re t u rn s an ar ray
o f t h e co r r e s po nd i n g i n t e g e r s . Note : Th i s f u n c t i o n does no t i n c l u d e any

s p e c i a l c h a r a c t e r s i n t h e a r ray o f i n t e g e r s . ”””
3

4 m e s s a g e i n t e g e r s = [ ] #make an ar ray t o s t o r e i n t e g e r s
5

6 me s s age no space = message . r e p l a c e ( ” ” , ” ” ) # remove space s from t h e s t r i n g
7 m e s s a g e l o w e r c a s e = mes s age no space . lower ( ) # c o n v e r t t o lower case
8 me s s age cha r = l i s t ( m e s s a g e l o w e r c a s e ) # S p l i t s t r i n g i n t o c h a r a c t e r s
9

10 f o r a l e t t e r in mes sage cha r :
11 c o n v e r t e d l e t t e r = ord ( a l e t t e r ) − 97 #Use ord ( ) f u n c t i o n t o g e t ASCII

v a l u e o f c h a r a c t e r and s u b t r a c t 97 t o g e t a = 0
12 i f ( c o n v e r t e d l e t t e r >= 0 and c o n v e r t e d l e t t e r <=25 ) : #add t h e l e t t e r

t o t h e message i n t e g e r s array , i f i t i s a−z (0 −25) .
13 m e s s a g e i n t e g e r s = np . append ( m e s s a g e i n t e g e r s , c o n v e r t e d l e t t e r )
14 re turn m e s s a g e i n t e g e r s

These lines below save the array of integers to the variable named message in numbers.

1 mes s age i n numbe r s = p l a i n t e x t ( message ) # s t o r e t h e a r ray o f i n t e g e r s
2 pr in t ( mes s age i n numbe r s )

The next step is to convert the array plain-numbers into blocks based on the size of the key. The block function below

takes the encryption key matrix size chosen earlier and the array of integers to be blocked.
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These lines below save the array of  integers to the variable named message_in_numbers.

The next step is to convert the array plain-numbers into blocks based on the size of  the key. The 

block function below takes the encryption key matrix size chosen earlier and the array of  integers to 

be blocked.

To check the output, we will do an assignment and print statement of  the message_in_numbers 

_blocked.

After setting up the plaintext, we can now encrypt using matrix multiplication and modular 

arithmetic. The function encrypt below accepts the array of  arrays and multiplies it by one of  the 

encryption key matrices, based on the chosen key size. This function then performs matrix multi-

plication for each plain-number (or plaintext of  integers) matrix and the encryption key matrix. We 

also perform modular arithmetic mod 26 to ensure that we can later convert each number to an 

equivalent alphabet letter (using Table 1).

1 # Note : Each i n n e r a r ray i s a row o f t h e m a t r i x
2 KEY A= [ [ 5 , 3 ] , [ 1 , 4 ] ]
3 KEY B = [ [ 2 , 5 , 1 0 ] , [ 3 , 5 , 8 ] , [ 1 , 2 , 3 ] ]
4 KEY C = [ [ 1 3 , 3 , 4 , 1 ] , [ 2 4 , 6 , 5 , 1 ] , [ 9 , 5 , 5 , 1 ] , [ 8 , 3 , 4 , 1 ] ]

The following lines allow us to enter the encryption key size that we would like to use to encrypt the message. Based
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1 message = input ( ) # u s e r i n p u t f o r p l a i n t e x t message
2 pr in t ( message )

The function plaintext below converts letters of the plaintext to their corresponding values based on Table 1. The

function removes the spaces, converts all of the characters in the string to lower case, and converts them to their

corresponding integer values.

1 def p l a i n t e x t ( message ) :
2 ””” Accep t s a p l a i n t e x t message , removes space s and c o n v e r t s t o lower case .

Then c o n v e r t s each c h a r a c t e r t o numer i ca l v a l u e . Re t u rn s an ar ray
o f t h e co r r e s po nd i n g i n t e g e r s . Note : Th i s f u n c t i o n does no t i n c l u d e any

s p e c i a l c h a r a c t e r s i n t h e a r ray o f i n t e g e r s . ”””
3

4 m e s s a g e i n t e g e r s = [ ] #make an ar ray t o s t o r e i n t e g e r s
5

6 me s s age no space = message . r e p l a c e ( ” ” , ” ” ) # remove space s from t h e s t r i n g
7 m e s s a g e l o w e r c a s e = mes s age no space . lower ( ) # c o n v e r t t o lower case
8 me s s age cha r = l i s t ( m e s s a g e l o w e r c a s e ) # S p l i t s t r i n g i n t o c h a r a c t e r s
9

10 f o r a l e t t e r in mes sage cha r :
11 c o n v e r t e d l e t t e r = ord ( a l e t t e r ) − 97 #Use ord ( ) f u n c t i o n t o g e t ASCII

v a l u e o f c h a r a c t e r and s u b t r a c t 97 t o g e t a = 0
12 i f ( c o n v e r t e d l e t t e r >= 0 and c o n v e r t e d l e t t e r <=25 ) : #add t h e l e t t e r

t o t h e message i n t e g e r s array , i f i t i s a−z (0 −25) .
13 m e s s a g e i n t e g e r s = np . append ( m e s s a g e i n t e g e r s , c o n v e r t e d l e t t e r )
14 re turn m e s s a g e i n t e g e r s

These lines below save the array of integers to the variable named message in numbers.

1 mes s age i n numbe r s = p l a i n t e x t ( message ) # s t o r e t h e a r ray o f i n t e g e r s
2 pr in t ( mes s age i n numbe r s )

The next step is to convert the array plain-numbers into blocks based on the size of the key. The block function below

takes the encryption key matrix size chosen earlier and the array of integers to be blocked.
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1 def b lock ( b l o c k s i z e , t o b l o c k ) :
2 ””” Accep t s t h e b l o c k s i z e and ar ray o f i n t e g e r s t o be b l o c k ed . Re t u rn s

re shaped ar ray o f i n t e g e r s . ”””
3 b l o cked = [ ] # ho l d s a r ray o f numbers t h a t have been b l o c k ed
4

5 #add t h e l e t t e r z as needed by l o o k i n g a t t h e r ema inde r s .
6 r e m a i n d e r o f b l o c k s i z e s = l en ( t o b l o c k )%b l o c k s i z e # g e t t h e rema inder o f

t h e s i z e o f t o b l o c k a r ray d i v i d e d by b l o c k s i z e
7 # wh i l e loop t o add t o t o b l o c k a r ray wh i l e rema inder i s no t z e r o .
8 whi le r e m a i n d e r o f b l o c k s i z e s != 0 :
9 t o b l o c k = np . append ( t o b l o c k , 2 5 ) #add 25 u n t i l r ema inder i s z e r o .

10 r e m a i n d e r o f b l o c k s i z e s = l en ( t o b l o c k )%b l o c k s i z e # upda t e
r e m a i n d e r o f b l o c k s i z e s w i t h new remainder o f t o b l o c k a r ray
d i v i d e d by b l o c k s i z e

11

12 # re shape t h e 1D ar ray t o 2D us i ng re shape
13 b l o cked = np . r e s h a p e ( t o b l o c k , ( −1 , b l o c k s i z e ) )
14 re turn b locked

To check the output, we will do an assignment and print statement of the message in numbers blocked.

1 me s s ag e i n numbe r s b l o ck ed = b lock ( key , mes s age i n numbe r s )
2 me s s ag e i n numbe r s b l o ck ed

After setting up the plaintext, we can now encrypt using matrix multiplication and modular arithmetic. The function

encrypt below accepts the array of arrays and multiplies it by one of the encryption key matrices, based on the chosen

key size. This function then performs matrix multiplication for each plain-number (or plaintext of integers) matrix

and the encryption key matrix. We also perform modular arithmetic mod 26 to ensure that we can later convert each

number to an equivalent alphabet letter (using Table 1).

1 def e n c r y p t ( p l a i n t e x t i n t e g e r s ) :
2 ””” Accep t s p l a i n t e x t i n t e g e r s a r ray . Per forms m a t r i x m u l t i p l i c a t i o n based
3 on t h e key chosen . Re t u rn s p roduc t mod 26 . ”””
4 e n c r yp t e d me s s ag e = [ ] # ho l d s t h e p roduc t o f t h e m a t r i x m u l t i p l i c a t i o n ,

t h e c i phe r −numbers .
5

6 i f key == 2 :
7 KEY = KEY A;
8 i f key == 3 :
9 KEY = KEY B ;

10 i f key == 4 :
11 KEY = KEY C ;
12

13 f o r a b l o c k p l a i n t e x t in p l a i n t e x t i n t e g e r s :
14 e n c ryp t ed numbe r = np . do t (KEY, a b l o c k p l a i n t e x t )%26 # use np . do t

f u n c t i o n t o per fo rm m a t r i x m u l t i p l i c a t i o n , r educe mod 26
15 e n c r yp t e d me s s ag e = np . append ( enc ryp t ed mes s age , enc ryp t ed numbe r ) #

s t o r e t h e c i phe r −numbers
16 re turn en c r yp t e d me s s ag e
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1 def b lock ( b l o c k s i z e , t o b l o c k ) :
2 ””” Accep t s t h e b l o c k s i z e and ar ray o f i n t e g e r s t o be b l o c k ed . Re t u rn s

re shaped ar ray o f i n t e g e r s . ”””
3 b l o cked = [ ] # ho l d s a r ray o f numbers t h a t have been b l o c k ed
4

5 #add t h e l e t t e r z as needed by l o o k i n g a t t h e r ema inde r s .
6 r e m a i n d e r o f b l o c k s i z e s = l en ( t o b l o c k )%b l o c k s i z e # g e t t h e rema inder o f

t h e s i z e o f t o b l o c k a r ray d i v i d e d by b l o c k s i z e
7 # wh i l e loop t o add t o t o b l o c k a r ray wh i l e rema inder i s no t z e r o .
8 whi le r e m a i n d e r o f b l o c k s i z e s != 0 :
9 t o b l o c k = np . append ( t o b l o c k , 2 5 ) #add 25 u n t i l r ema inder i s z e r o .

10 r e m a i n d e r o f b l o c k s i z e s = l en ( t o b l o c k )%b l o c k s i z e # upda t e
r e m a i n d e r o f b l o c k s i z e s w i t h new remainder o f t o b l o c k a r ray
d i v i d e d by b l o c k s i z e

11

12 # re shape t h e 1D ar ray t o 2D us i ng re shape
13 b l o cked = np . r e s h a p e ( t o b l o c k , ( −1 , b l o c k s i z e ) )
14 re turn b locked

To check the output, we will do an assignment and print statement of the message in numbers blocked.

1 me s s ag e i n numbe r s b l o ck ed = b lock ( key , mes s age i n numbe r s )
2 pr in t ( me s s ag e i n numbe r s b l o ck ed )

After setting up the plaintext, we can now encrypt using matrix multiplication and modular arithmetic. The function

encrypt below accepts the array of arrays and multiplies it by one of the encryption key matrices, based on the chosen

key size. This function then performs matrix multiplication for each plain-number (or plaintext of integers) matrix

and the encryption key matrix. We also perform modular arithmetic mod 26 to ensure that we can later convert each

number to an equivalent alphabet letter (using Table 1).

1 def e n c r y p t ( p l a i n t e x t i n t e g e r s ) :
2 ””” Accep t s p l a i n t e x t i n t e g e r s a r ray . Per forms m a t r i x m u l t i p l i c a t i o n based
3 on t h e key chosen . Re t u rn s p roduc t mod 26 . ”””
4 e n c r yp t e d me s s ag e = [ ] # ho l d s t h e p roduc t o f t h e m a t r i x m u l t i p l i c a t i o n ,

t h e c i phe r −numbers .
5

6 i f key == 2 :
7 KEY = KEY A
8 i f key == 3 :
9 KEY = KEY B

10 i f key == 4 :
11 KEY = KEY C
12

13 f o r a b l o c k p l a i n t e x t in p l a i n t e x t i n t e g e r s :
14 e n c ryp t ed numbe r = np . do t (KEY, a b l o c k p l a i n t e x t )%26 # use np . do t

f u n c t i o n t o per fo rm m a t r i x m u l t i p l i c a t i o n and reduce mod 26
15 e n c r yp t e d me s s ag e = np . append ( enc ryp t ed mes s age , enc ryp t ed numbe r )
16 # s t o r e t h e c i phe r −numbers
17 re turn en c r yp t e d me s s ag e
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Similarly, check that we have expected output from the encrypt function.

Now that we have the cipher-numbers (which are encrypted plain-numbers), we can convert the 

cipher-numbers to their corresponding letters from Table 1 to get the ciphertext. The following 

function ciphertext takes in the array of  arrays of  cipher-numbers and converts it to letters. It returns 

the corresponding string in all upper case.

1 def b lock ( b l o c k s i z e , t o b l o c k ) :
2 ””” Accep t s t h e b l o c k s i z e and ar ray o f i n t e g e r s t o be b l o c k ed . Re t u rn s

re shaped ar ray o f i n t e g e r s . ”””
3 b l o cked = [ ] # ho l d s a r ray o f numbers t h a t have been b l o c k ed
4

5 #add t h e l e t t e r z as needed by l o o k i n g a t t h e r ema inde r s .
6 r e m a i n d e r o f b l o c k s i z e s = l en ( t o b l o c k )%b l o c k s i z e # g e t t h e rema inder o f

t h e s i z e o f t o b l o c k a r ray d i v i d e d by b l o c k s i z e
7 # wh i l e loop t o add t o t o b l o c k a r ray wh i l e rema inder i s no t z e r o .
8 whi le r e m a i n d e r o f b l o c k s i z e s != 0 :
9 t o b l o c k = np . append ( t o b l o c k , 2 5 ) #add 25 u n t i l r ema inder i s z e r o .

10 r e m a i n d e r o f b l o c k s i z e s = l en ( t o b l o c k )%b l o c k s i z e # upda t e
r e m a i n d e r o f b l o c k s i z e s w i t h new remainder o f t o b l o c k a r ray
d i v i d e d by b l o c k s i z e

11

12 # re shape t h e 1D ar ray t o 2D us i ng re shape
13 b l o cked = np . r e s h a p e ( t o b l o c k , ( −1 , b l o c k s i z e ) )
14 re turn b locked

To check the output, we will do an assignment and print statement of the message in numbers blocked.

1 me s s ag e i n numbe r s b l o ck ed = b lock ( key , mes s age i n numbe r s )
2 pr in t ( me s s ag e i n numbe r s b l o ck ed )

After setting up the plaintext, we can now encrypt using matrix multiplication and modular arithmetic. The function

encrypt below accepts the array of arrays and multiplies it by one of the encryption key matrices, based on the chosen

key size. This function then performs matrix multiplication for each plain-number (or plaintext of integers) matrix

and the encryption key matrix. We also perform modular arithmetic mod 26 to ensure that we can later convert each

number to an equivalent alphabet letter (using Table 1).

1 def e n c r y p t ( p l a i n t e x t i n t e g e r s ) :
2 ””” Accep t s p l a i n t e x t i n t e g e r s a r ray . Per forms m a t r i x m u l t i p l i c a t i o n based
3 on t h e key chosen . Re t u rn s p roduc t mod 26 . ”””
4 e n c r yp t e d me s s ag e = [ ] # ho l d s t h e p roduc t o f t h e m a t r i x m u l t i p l i c a t i o n ,

t h e c i phe r −numbers .
5

6 i f key == 2 :
7 KEY = KEY A
8 i f key == 3 :
9 KEY = KEY B

10 i f key == 4 :
11 KEY = KEY C
12

13 f o r a b l o c k p l a i n t e x t in p l a i n t e x t i n t e g e r s :
14 e n c ryp t ed numbe r = np . do t (KEY, a b l o c k p l a i n t e x t )%26 # use np . do t

f u n c t i o n t o per fo rm m a t r i x m u l t i p l i c a t i o n and reduce mod 26
15 e n c r yp t e d me s s ag e = np . append ( enc ryp t ed mes s age , enc ryp t ed numbe r )
16 # s t o r e t h e c i phe r −numbers
17 re turn en c r yp t e d me s s ag e

21Similarly, check that we have expected output from the encrypt function.

1 m e s s a g e i n n u m b e r s e n c r y p t e d = e n c r y p t ( me s s ag e i n numbe r s b l o ck ed )
2 pr in t ( m e s s a g e i n n u m b e r s e n c r y p t e d )

Now that we have the cipher-numbers (which are encrypted plain-numbers), we can convert the cipher-numbers to their

corresponding letters from Table 1 to get the ciphertext. The following function ciphertext takes in the array of arrays

of cipher-numbers and converts it to letters. It returns the corresponding string in all upper case.

1 def c i p h e r t e x t ( encryp ted msg num ) :
2 ””” Accep t s a r ray o f i n t e g e r s . Conve r t s a r ray i n t o l e t t e r s . Re t u rn s a

s t r i n g i n upper case . Note : Th i s f u n c t i o n does no t i n c l u d e any s p e c i a l
c h a r a c t e r s . ”””

3 e nc ryp t ed msg = [ ] #make an ar ray t o s t o r e i n t e g e r s
4

5 # f o r loop f o r i n t e g e r s i n t h e e n c r y p t e d m s g i n t a r ray
6 f o r a number in encryp ted msg num :
7 conve r t ed numbe r = chr ( i n t ( a number ) + 97) # c o n v e r t a number i n t o an

i n t u s i n g i n t ( ) f u n c t i o n , add 97 t o match t h e ASCII va l ue s , and use
chr ( ) f u n c t i o n t o c o n v e r t t h e i n t e g e r i n t o a c h a r a c t e r

8 e nc ryp t ed msg = np . append ( enc ryp ted msg , conve r t ed numbe r )
9

10 e n c r y p t e d m s g s t r = ” ”
11 e n c r y p t e d m s g s t r = e n c r y p t e d m s g s t r . j o i n ( enc ryp t ed msg ) # use j o i n ( )

f u n c t i o n t o c o n v e r t a r ray o f c h a r a c t e r s i n t o a s t r i n g .
12

13 re turn e n c r y p t e d m s g s t r . uppe r ( )

Now, we need to store the ciphertext to decrypt the same message. This will be a way to check that the calculations are

correct.

1 m e s s a g e i n l e t t e r s e n c r y p t e d = c i p h e r t e x t ( m e s s a g e i n n u m b e r s e n c r y p t e d )
2 pr in t ( m e s s a g e i n l e t t e r s e n c r y p t e d )

6.2 Decryption

All code below will be for the decryption process. This process is shorter in the program because we get to reuse some

of the functions above from the encryption process. We are starting with the ciphertext when we decrypt using the

inverse of the key.

The function decrypt accepts the ciphertext string from the encryption process above. Then, it uses the modular

inverse of the key. It then uses the same plaintext function from encryption to convert the string into an array of integers,

and the block function to block the array of integers into an array of arrays. Then we use matrix multiplication and

modular arithmetic to get the deciphered array of integers.
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Similarly, check that we have expected output from the encrypt function.

1 m e s s a g e i n n u m b e r s e n c r y p t e d = e n c r y p t ( me s s ag e i n numbe r s b l o ck ed )
2 pr in t ( m e s s a g e i n n u m b e r s e n c r y p t e d )

Now that we have the cipher-numbers (which are encrypted plain-numbers), we can convert the cipher-numbers to their

corresponding letters from Table 1 to get the ciphertext. The following function ciphertext takes in the array of arrays

of cipher-numbers and converts it to letters. It returns the corresponding string in all upper case.

1 def c i p h e r t e x t ( encryp ted msg num ) :
2 ””” Accep t s a r ray o f i n t e g e r s . Conve r t s a r ray i n t o l e t t e r s . Re t u rn s a

s t r i n g i n upper case . Note : Th i s f u n c t i o n does no t i n c l u d e any s p e c i a l
c h a r a c t e r s . ”””

3 e nc ryp t ed msg = [ ] #make an ar ray t o s t o r e i n t e g e r s
4

5 # f o r loop f o r i n t e g e r s i n t h e e n c r y p t e d m s g i n t a r ray
6 f o r a number in encryp ted msg num :
7 conve r t ed numbe r = chr ( i n t ( a number ) + 97) # c o n v e r t a number i n t o an

i n t u s i n g i n t ( ) f u n c t i o n , add 97 t o match t h e ASCII va l ue s , and use
chr ( ) f u n c t i o n t o c o n v e r t t h e i n t e g e r i n t o a c h a r a c t e r

8 e nc ryp t ed msg = np . append ( enc ryp ted msg , conve r t ed numbe r )
9

10 e n c r y p t e d m s g s t r = ” ”
11 e n c r y p t e d m s g s t r = e n c r y p t e d m s g s t r . j o i n ( enc ryp t ed msg ) # use j o i n ( )

f u n c t i o n t o c o n v e r t a r ray o f c h a r a c t e r s i n t o a s t r i n g .
12

13 re turn e n c r y p t e d m s g s t r . uppe r ( )

Now, we need to store the ciphertext to decrypt the same message. This will be a way to check that the calculations are

correct.

1 m e s s a g e i n l e t t e r s e n c r y p t e d = c i p h e r t e x t ( m e s s a g e i n n u m b e r s e n c r y p t e d )
2 pr in t ( m e s s a g e i n l e t t e r s e n c r y p t e d )

6.2 Decryption

All code below will be for the decryption process. This process is shorter in the program because we get to reuse some

of the functions above from the encryption process. We are starting with the ciphertext when we decrypt using the

inverse of the key.

The function decrypt accepts the ciphertext string from the encryption process above. Then, it uses the modular

inverse of the key. It then uses the same plaintext function from encryption to convert the string into an array of integers,

and the block function to block the array of integers into an array of arrays. Then we use matrix multiplication and

modular arithmetic to get the deciphered array of integers.
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Now, we need to store the ciphertext to decrypt the same message. This will be a way to check that 

the calculations are correct.

6.2 Decryption
All code below will be for the decryption process. This process is shorter in the program because 

we get to reuse some of  the functions above from the encryption process. We are starting with the 

ciphertext when we decrypt using the inverse of  the key.

The function decrypt accepts the ciphertext string from the encryption process above. Then, it 

uses the modular inverse of  the key. It then uses the same plaintext function from encryption to con-

vert the string into an array of  integers, and the block function to block the array of  integers into an 

array of  arrays. Then we use matrix multiplication and modular arithmetic to get the deciphered 

array of  integers.

We call our decrypt function to save the deciphered numbers as an array.

Similarly, check that we have expected output from the encrypt function.

1 m e s s a g e i n n u m b e r s e n c r y p t e d = e n c r y p t ( me s s ag e i n numbe r s b l o ck ed )
2 m e s s a g e i n n u m b e r s e n c r y p t e d

Now that we have the cipher-numbers (which are encrypted plain-numbers), we can convert the cipher-numbers to their

corresponding letters from Table 1 to get the ciphertext. The following function ciphertext takes in the array of arrays

of cipher-numbers and converts it to letters. It returns the corresponding string in all upper case.

1 def c i p h e r t e x t ( encryp ted msg num ) :
2 ””” Accep t s a r ray o f i n t e g e r s . Conve r t s a r ray i n t o l e t t e r s . Re t u rn s a

s t r i n g i n upper case . Note : Th i s f u n c t i o n does no t i n c l u d e any
s p e c i a l c h a r a c t e r s . ”””

3 e nc ryp t ed msg = [ ] #make an ar ray t o s t o r e i n t e g e r s
4

5 # f o r loop f o r i n t e g e r s i n t h e e n c r y p t e d m s g i n t a r ray
6 f o r a number in encryp ted msg num :
7 conve r t ed numbe r = chr ( i n t ( a number ) + 97) # c o n v e r t a number i n t o an

i n t u s i n g i n t ( ) f u n c t i o n , add 97 t o match t h e ASCII va l ue s , and use
chr ( ) f u n c t i o n t o c o n v e r t t h e i n t e g e r i n t o a c h a r a c t e r

8 e nc ryp t ed msg = np . append ( enc ryp ted msg , conve r t ed numbe r )
9

10 e n c r y p t e d m s g s t r = ” ”
11 e n c r y p t e d m s g s t r = e n c r y p t e d m s g s t r . j o i n ( enc ryp t ed msg ) # use j o i n ( )

f u n c t i o n t o c o n v e r t a r ray o f c h a r a c t e r s i n t o a s t r i n g .
12

13 re turn e n c r y p t e d m s g s t r . uppe r ( )

Now, we need to store the ciphertext to decrypt the same message. This will be a way to check that the calculations are

correct.

1 m e s s a g e i n l e t t e r s e n c r y p t e d = c i p h e r t e x t ( m e s s a g e i n n u m b e r s e n c r y p t e d )
2 pr in t ( m e s s a g e i n l e t t e r s e n c r y p t e d )

6.2 Decryption

All code below will be for the decryption process. This process is shorter in the program because we get to reuse some

of the functions above from the encryption process. We are starting with the ciphertext when we decrypt using the

inverse of the key.

The function decrypt accepts the ciphertext string from the encryption process above. Then, it uses the modular

inverse of the key. It then uses the same plaintext function from encryption to convert the string into an array of integers,

and the block function to block the array of integers into an array of arrays. Then we use matrix multiplication and

modular arithmetic to get the deciphered array of integers.

221 def d e c r y p t ( c i p h e r t e x t s t r ) :
2 ””” Accep t s a s t r i n g . Per forms m a t r i x m u l t i p l i c a t i o n u s i ng d e c r y p t i o n key

m a t r i x . Re t u r n s p roduc t mod 26 , an ar ray o f i n t e g e r s . ”””
3 # Note : t h e f o l l o w i n g are modular i n v e r s e s o f t h e e n c r y p t i o n m a t r i x k e y s
4 i f key == 2 :
5 inv KEY = [ [ 1 4 , 9 ] , [ 3 , 1 1 ] ]
6 i f key == 3 :
7 inv KEY = [ [ 1 7 , 1 9 , 1 4 ] , [ 1 7 , 1 6 , 2 2 ] , [ 9 , 9 , 7 ] ]
8 i f key == 4 :
9 inv KEY = [ [ 2 1 , 0 , 0 , 5 ] , [ 2 3 , 1 , 2 5 , 3 ] , [ 1 1 , 2 4 , 3 , 1 4 ] , [ 5 , 5 , 1 7 , 0 ] ]

10

11 c i p h e r t e x t i n t = p l a i n t e x t ( c i p h e r t e x t s t r ) # Conve r t s s t r t o i n t a r ray
12 c i p h e r t e x t i n t b l o c k e d = b lock ( key , c i p h e r t e x t i n t ) # b l o c k s c i p h e r t e x t i n t
13 d e c i p h e r e d m e s s ag e = [ ] # ho l d s p roduc t o f m a t r i x m u l t i p l i c a t i o n o f

i n v e r t e d key and c i p h e r t e x t
14

15 f o r a b l o c k c i p h e r t e x t in c i p h e r t e x t i n t b l o c k e d :
16 d e c i phe r ed numbe r = np . do t ( inv KEY , a b l o c k c i p h e r t e x t )%26
17 d e c i p h e r e d m e s s a g e = np . append ( dec i phe r ed mes s age , d e c i phe r ed numbe r )
18 re turn de c i ph e r e d m e s s ag e

We call our decrypt function to save the deciphered numbers as an array.

1 m e s s a g e i n n u m b e r s d e c r y p t e d = d e c r y p t ( m e s s a g e i n l e t t e r s e n c r y p t e d )
2 pr in t ( m e s s a g e i n n u m b e r s d e c r y p t e d )

Last, we need to convert deciphered-numbers into our final deciphered text string. This function is similar to the

plaintext function in Section 6.1, but here we use a different formula to get back to the original message.
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2 ””” Accep t s t h e a r ray o f numbers . Conve r t s i t i n t o l e t t e r s . Re t u rn s t h e

s t r i n g i n l owe r ca s e . ”””
3 d e c ryp t ed msg = [ ]
4 # f o r loop f o r i n t e g e r s i n dec iphered msg num ar ray
5 f o r a number in dec iphered msg num :
6 conve r t ed numbe r = chr ( i n t ( a number ) + 97)
7 d ec ryp t ed msg = np . append ( dec ryp ted msg , conve r t ed numbe r )
8

9 d e c i p h e r e d m s g s t r = ” ”
10 d e c i p h e r e d m s g s t r = d e c i p h e r e d m s g s t r . j o i n ( dec ryp t ed msg )
11

12 re turn d e c i p h e r e d m s g s t r

To check, we display the deciphered text. We should get the original message (with possible additional padding)

1 m e s s a g e i n l e t t e r s d e c r y p t e d = d e c i p h e r e d t e x t ( m e s s a g e i n n u m b e r s d e c r y p t e d )
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Last, we need to convert deciphered-numbers into our final deciphered text string. This function is similar to the

plaintext function in Section 6.1, but here we use a different formula to get back to the original message.
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7 d ec ryp t ed msg = np . append ( dec ryp ted msg , conve r t ed numbe r )
8

9 d e c i p h e r e d m s g s t r = ” ”
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Last, we need to convert deciphered-numbers into our final deciphered text string. This function is 

similar to the plaintext function in Section 6.1, but here we use a different formula to get back to the 

original message.

To check, we display the deciphered text. We should get the original message (with possible addi-

tional padding).

7. Summary and future research directions

Although the computing power available today renders the Hill cipher obsolete as a stand-alone 

encryption method, the Hill cipher provides a valuable and accessible introduction to important 

methods in number theory and linear algebra that are used in a wide variety of  encryption meth-

ods. In addition, the Hill cipher method is used as part of  encryption of  images along with 1D 

chaotic maps; see [2] for further details. Our research described a plaintext attack on the Hill cipher. 

Future coding projects could include the implementation of  a software-based approach to breaking 

the Hill cipher using plaintext attack, ciphertext only, chosen plaintext or chosen ciphertext attacks, 

or the use of  the Hill cipher as a diffusion method in combination with other encryption algorithms.

1 def d e c r y p t ( c i p h e r t e x t s t r ) :
2 ””” Accep t s a s t r i n g . Per forms m a t r i x m u l t i p l i c a t i o n u s i ng d e c r y p t i o n key

m a t r i x . Re t u r n s p roduc t mod 26 , an ar ray o f i n t e g e r s . ”””
3 # Note : t h e f o l l o w i n g are modular i n v e r s e s o f t h e e n c r y p t i o n m a t r i x k e y s
4 i f key == 2 :
5 inv KEY = [ [ 1 4 , 9 ] , [ 3 , 1 1 ] ]
6 i f key == 3 :
7 inv KEY = [ [ 1 7 , 1 9 , 1 4 ] , [ 1 7 , 1 6 , 2 2 ] , [ 9 , 9 , 7 ] ]
8 i f key == 4 :
9 inv KEY = [ [ 2 1 , 0 , 0 , 5 ] , [ 2 3 , 1 , 2 5 , 3 ] , [ 1 1 , 2 4 , 3 , 1 4 ] , [ 5 , 5 , 1 7 , 0 ] ]

10

11 c i p h e r t e x t i n t = p l a i n t e x t ( c i p h e r t e x t s t r ) # Conve r t s s t r t o i n t a r ray
12 c i p h e r t e x t i n t b l o c k e d = b lock ( key , c i p h e r t e x t i n t ) # b l o c k s c i p h e r t e x t i n t
13 d e c i p h e r e d m e s s ag e = [ ] # ho l d s p roduc t o f m a t r i x m u l t i p l i c a t i o n o f

i n v e r t e d key and c i p h e r t e x t
14

15 f o r a b l o c k c i p h e r t e x t in c i p h e r t e x t i n t b l o c k e d :
16 d e c i phe r ed numbe r = np . do t ( inv KEY , a b l o c k c i p h e r t e x t )%26
17 d e c i p h e r e d m e s s a g e = np . append ( dec i phe r ed mes s age , d e c i phe r ed numbe r )
18 re turn de c i ph e r e d m e s s ag e

We call our decrypt function to save the deciphered numbers as an array.

1 m e s s a g e i n n u m b e r s d e c r y p t e d = d e c r y p t ( m e s s a g e i n l e t t e r s e n c r y p t e d )
2 pr in t ( m e s s a g e i n n u m b e r s d e c r y p t e d )

Last, we need to convert deciphered-numbers into our final deciphered text string. This function is similar to the

plaintext function in Section 6.1, but here we use a different formula to get back to the original message.

1 def d e c i p h e r e d t e x t ( dec iphered msg num ) :
2 ””” Accep t s t h e a r ray o f numbers . Conve r t s i t i n t o l e t t e r s . Re t u rn s t h e

s t r i n g i n l owe r ca s e . ”””
3 d e c ryp t ed msg = [ ]
4 # f o r loop f o r i n t e g e r s i n dec iphered msg num ar ray
5 f o r a number in dec iphered msg num :
6 conve r t ed numbe r = chr ( i n t ( a number ) + 97)
7 d ec ryp t ed msg = np . append ( dec ryp ted msg , conve r t ed numbe r )
8

9 d e c i p h e r e d m s g s t r = ” ”
10 d e c i p h e r e d m s g s t r = d e c i p h e r e d m s g s t r . j o i n ( dec ryp t ed msg )
11

12 re turn d e c i p h e r e d m s g s t r

To check, we display the deciphered text. We should get the original message (with possible additional padding)

1 m e s s a g e i n l e t t e r s d e c r y p t e d = d e c i p h e r e d t e x t ( m e s s a g e i n n u m b e r s d e c r y p t e d )
2 pr in t ( m e s s a g e i n l e t t e r s d e c r y p t e d )
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3 # Note : t h e f o l l o w i n g are modular i n v e r s e s o f t h e e n c r y p t i o n m a t r i x k e y s
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6 i f key == 3 :
7 inv KEY = [ [ 1 7 , 1 9 , 1 4 ] , [ 1 7 , 1 6 , 2 2 ] , [ 9 , 9 , 7 ] ]
8 i f key == 4 :
9 inv KEY = [ [ 2 1 , 0 , 0 , 5 ] , [ 2 3 , 1 , 2 5 , 3 ] , [ 1 1 , 2 4 , 3 , 1 4 ] , [ 5 , 5 , 1 7 , 0 ] ]

10

11 c i p h e r t e x t i n t = p l a i n t e x t ( c i p h e r t e x t s t r ) # Conve r t s s t r t o i n t a r ray
12 c i p h e r t e x t i n t b l o c k e d = b lock ( key , c i p h e r t e x t i n t ) # b l o c k s c i p h e r t e x t i n t
13 d e c i p h e r e d m e s s ag e = [ ] # ho l d s p roduc t o f m a t r i x m u l t i p l i c a t i o n o f

i n v e r t e d key and c i p h e r t e x t
14

15 f o r a b l o c k c i p h e r t e x t in c i p h e r t e x t i n t b l o c k e d :
16 d e c i phe r ed numbe r = np . do t ( inv KEY , a b l o c k c i p h e r t e x t )%26
17 d e c i p h e r e d m e s s a g e = np . append ( dec i phe r ed mes s age , d e c i phe r ed numbe r )
18 re turn de c i ph e r e d m e s s ag e

We call our decrypt function to save the deciphered numbers as an array.

1 m e s s a g e i n n u m b e r s d e c r y p t e d = d e c r y p t ( m e s s a g e i n l e t t e r s e n c r y p t e d )
2 pr in t ( m e s s a g e i n n u m b e r s d e c r y p t e d )

Last, we need to convert deciphered-numbers into our final deciphered text string. This function is similar to the

plaintext function in Section 6.1, but here we use a different formula to get back to the original message.

1 def d e c i p h e r e d t e x t ( dec iphered msg num ) :
2 ””” Accep t s t h e a r ray o f numbers . Conve r t s i t i n t o l e t t e r s . Re t u rn s t h e

s t r i n g i n l owe r ca s e . ”””
3 d e c ryp t ed msg = [ ]
4 # f o r loop f o r i n t e g e r s i n dec iphered msg num ar ray
5 f o r a number in dec iphered msg num :
6 conve r t ed numbe r = chr ( i n t ( a number ) + 97)
7 d ec ryp t ed msg = np . append ( dec ryp ted msg , conve r t ed numbe r )
8

9 d e c i p h e r e d m s g s t r = ” ”
10 d e c i p h e r e d m s g s t r = d e c i p h e r e d m s g s t r . j o i n ( dec ryp t ed msg )
11

12 re turn d e c i p h e r e d m s g s t r

To check, we display the deciphered text. We should get the original message (with possible additional padding)

1 m e s s a g e i n l e t t e r s d e c r y p t e d = d e c i p h e r e d t e x t ( m e s s a g e i n n u m b e r s d e c r y p t e d )
2 pr in t ( m e s s a g e i n l e t t e r s d e c r y p t e d )
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Abstract

Substance use disorder is defined as the perpetual craving and re-

peated use of  a drug despite its negative impact on the user and 

their overall well-being. One drug that is very common in sub-

stance use disorders is alcohol. Alcohol serves as a stimulant drug 

in small doses, but when large amounts are consumed, it acts as a 

depressant. There are a number of  biological, psychological, and 

social causes and negative effects of  alcohol use disorder. Despite 

often being taken for granted, alcohol contributes to a signifi-

cant number of  deaths in the United States every year. Studying 

and understanding alcohol use disorder through what is termed 

a “biopsychosocial lens” can help researchers and health officials 

continue to determine the causes for this disorder, as well as poten-

tial treatments for individuals living with it. Additionally, cultural 

differences must be considered when making any generalizations 

about alcohol use disorder, or the groups of  people that it impacts. 

Future research will likely continue to build on what researchers 

already know and may eventually lead to a better understanding 

of  the disorder, and even more effective methods of  treatment.
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Substance Abuse and Alcoholism

Substances such as drugs and other chemicals have the ability to 

temporarily alter an individual’s state of  consciousness and bend 

their reality. There is a variety of  reasons a person may choose to 

use drugs including to improve health or relieve pain, for religious 

purposes, or sometimes just for fun. Moderate use of  prescribed 

or legalized recreational drugs can often give users their desired 

experience without any maladaptive consequences; however, 

many individuals use the drug so frequently that their moderate 

use becomes a substance abuse disorder (Myers & DeWall, 2018, 

101). Substance abuse disorder refers to the perpetual craving and 

repeated use of  a drug despite its negative impact on the user’s 

physical health and overall life. Those who struggle with this disor-

der face its devastating impacts on their lives every day, and often 

struggle to recover from it. 

One drug common with substance abuse disorders is alcohol. 

Alcohol is classified as a stimulant drug in small doses, but if  the 

user consumes a large amount of  the drug it functions as a depres-

sant. Like any drug, alcohol alters the brain’s regular functioning. 

When it enters the brain, its effects include (a) increasing the effi-

ciency of  the inhibitory neurotransmitter GABA, and (b) impeding 

the ability of  glutamate, an excitatory neurotransmitter, to bind 

to receptor sites in the brain (Genetic Science Learning Center, 

2013). This double inhibitory effect is what slows the brain’s neural 

activity as well as the bodily functions, producing the depressant 

effect. For many Americans, drinking alcohol is a “cool” and highly 

sought-after way to relax or have fun. In many cases, it seems like a 

nearly harmless way to kick off a weekend for a wide range of  ages. 

Unfortunately, this perception that drinking alcohol is a casual, 

completely harmless activity is far from accurate, as the drug con-

tributes to roughly 95,000 deaths a year in the United States alone, 

making it the country’s third most common preventable cause of  

death (National Institute on Alcohol Abuse and Alcoholism, 2021).
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Alcoholism: Problem Justification

Because of  the common misconception that alcohol is a casual and 

harmless drug, it is one that many individuals start using at a very 

young age. According to the National Institute on Alcohol Abuse 

and Alcoholism, approximately 4% of  all alcohol consumed in the 

United States is consumed by individuals ages 12 to 20, making it 

the most used drug among the country’s youth (National Institute 

on Alcohol Abuse and Alcoholism, 2021). While the reasons for 

consuming alcohol at any age are specific to the individual, the 

oftentimes tragic effects impact many.

An individual’s drinking may physically harm only them-

selves directly, with slowed body functions, impaired memory, and 

liver damage, but it can indirectly harm others in numerous ways 

as well. The Motor Vehicle Crash Data Report released in 2021 

by the National Highway Traffic Safety Administration (NHTSA) 

showed that in the year 2019, 28% of  all traffic fatalities in the 

United States were alcohol related (pg. 1). In many cases, the 

impaired driver is not the only one injured in these car crashes, 

and innocent lives are lost. Aside from alcohol’s effects behind 

the wheel, alcohol use contributes to around 700,000 assaults, in-

cluding nearly 97,000 sexual assaults in the United States each 

year (Myers & DeWall, 2018). Like most abused drugs, alcohol 

affects many more people than just the user, with those additional 

people impacted typically being those closest to the user. When 

an individual has crossed the threshold to alcohol use disorder, 

family and friends begin to suffer the consequences of  alcoholism. 

Every substance abuse disorder involves maladaptive effects on the 

user’s daily life. Whether they are actively out drinking or away 

seeking treatment for their condition, an individual’s reliance on 

alcohol may impede their ability to maintain relationships. In any 

case, the loss of  these relationships may lead to the loss of  support 

that an individual dealing with alcoholism may have in their life, 

possibly extending their battle with addiction by decreasing the 
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likelihood of  them seeking treatment. In a broader spectrum, al-

cohol use disorder also negatively affects the nation overall, costing 

the United States more than $249 billion every year (Witkiewitz et 

al., 2019). While it is true that people who drink alcohol respon-

sibly typically experience few negative effects, many do not do so 

responsibly. These devastating effects have the potential to worsen 

as an individual’s drinking becomes more excessive, resulting in 

the development of  alcohol use disorder. 

Alcoholism: Causes and Effects

Approximately 14.5 million people were diagnosed with alco-

hol use disorder in 2019 (Substance Abuse and Mental Health 

Services Administration, 2019, pg. 35). Many individuals allow 

their cognitive bias to overrule logic and ignore the evidence, be-

coming overconfident in their ability to refrain from developing 

such disorders, and ultimately believing that they are an exception 

to the statistics. For years, researchers have studied possible causes 

as to why people develop alcohol use disorder, thoroughly study-

ing the issue from biological, social-cultural, developmental, and 

physical/mental health perspectives. 

Research suggests that individuals with a certain nucleotide 

polymorphism in their DNA may be more prone to alcohol de-

pendence and abuse (Kareken et al., 2010). The altered DNA 

affects their brains’ reward responses, which in experienced drink-

ers can lead to more positive experiences associated with alcohol, 

and therefore increased usage, which increases the odds of  addic-

tion. Regardless of  age or gender, the more alcohol an individual 

consumes, the higher their tolerance becomes, and hence the 

more they must consume to achieve those reward responses in the 

brain. Biologically speaking, men are more likely than women to 

develop a dependence on the drug (National Institute on Alcohol 

Abuse and Alcoholism, 2021). This may be a result of  differences 

in emotion processing or coping mechanisms for trauma or stress.
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Furthermore, those diagnosed with mental illnesses such as 

bipolar disorder and depression are likely to use alcohol and oth-

er substances as a coping mechanism and worsen their illness as 

a result (Smith et al., 2021). Excessive consumption of  alcohol 

contributes to the development of  certain psychiatric disorders 

(U.S. Department of  Health and Human Services, 2021). Though 

alcohol has temporary stimulating effects, and sometimes gives 

those who are struggling with stress an “escape,” the drug pro-

vides no long-term positive effects. 

From a social-cultural perspective, researchers have found 

that those who engage in drinking alcohol do so to fit in or keep 

up with what they think society’s expectation is for them. One 

study found that drinking in adolescents is heavily influenced by 

their friendship statuses with their peers. The study concluded 

that in social groups where “friendship status” mattered (such as 

cooperative team sports), adolescents were more likely to drink 

with only “reciprocated friends” (in other words, those who 

mutually considered said peer as a friend). Conversely, in groups 

where friendships status was less important, such as school clubs 

and activities, adolescents drank with peers regardless of  whether 

they were reciprocated friends (Fujimoto & Valente, 2013). In 

teams and cooperative groups, one may be more concerned 

with their peers’ perception of  them, only engaging in activities 

that they are sure will be accepted. In less cooperative groups, 

the adolescents subsequently paid less attention to what was 

acceptable in the group, perhaps in an attempt to act “cool” or 

rebellious. Regardless of  what is socially acceptable or expected 

at a given time, people tend to act in ways based on what they 

believe would make them fit into a particular group. The more a 

person believes they should be drinking, the more they will, which 

can often lead to abuse, and is a large reason so many people ages 

12-17 have alcohol use disorder (U.S. Department of  Health and 

Human Services, 2021). 
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In terms of  social-cultural effects of  alcohol use disorder, an 

individual abusing alcohol tends to neglect many important social 

aspects of  their life to make time for alcohol. This includes but is 

not limited to decreasing time spent with family and friends and 

declining motivation for work. This neglect results in a deteriora-

tion of  the user’s relationships and support systems.

Alcoholism: Potential Solutions

As more knowledge is gained on the causes and effects of  alcohol 

use disorder, researchers have investigated more effective meth-

ods of  treatment and prevention. Currently, many individuals 

seek recovery through Alcoholics Anonymous (AA), a fellowship 

of  “sobriety seekers” who meet with one another to share their 

stories, strength, and hope with one another as they commit them-

selves to accepting their wrongs, mending affected relationships, 

and actively work towards recovering themselves and their lives 

from their illness (Alcoholics Anonymous). According to one study, 

AA was 60% more successful than other methods of  intervention 

or no intervention at all, by reducing the participants’ consump-

tion of  alcohol and increasing the length of  time they abstained 

from drinking alcohol (Erickson, 2020). Though the statistics sup-

port AA’s effectiveness, some professionals skepticize that the lack 

of  professional involvement in such treatment is cause for concern 

(Erickson, 2020). This led researchers to a newer method of  treat-

ment being studied, motivational interviewing and intervention.

Motivational interviewing and intervention is a communica-

tion style that, like AA, encourages the patient to establish their 

own meaning for their disorder and develop a genuine desire to 

change their behavior. Several studies, each utilizing different 

samples of  people, have tested the effectiveness of  motivational 

interviewing. In one, over-the-phone motivational interviewing 

followed by either feedback or psychoeducation (an approach 

that combines educating the participant about their disorder with 
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structure and feedback in a safe environment) was used to treat 

active members of  the military dealing with untreated alcohol 

use disorder (Lukens, 2015). Though all participants decreased 

their alcohol consumption, those who received feedback reported 

fewer drinks per week than those who received psychoeducation 

(Walker et al., 2017). In a different study, individual motivation-

al interventions were used to treat adolescents abusing alcohol. 

When combined with family checkups, the treatment was found 

to be even more effective than it was without family checkups at 

short-term follow-ups three, six, and twelve months into treatment 

(Spirito et al., 2011). While therapy has been used in the past, mo-

tivational interviewing and intervention has since proven to be a 

more effective method of  treatment because it encourages the pa-

tient to actively take steps toward their recovery with professional 

guidance.

The effectiveness of  these interviews will also depend on oth-

er factors such as cultural and societal expectations. As the country 

moves toward becoming more open about mental health aware-

ness, and subsequently the rehabilitation of  those suffering from 

said disorders, there will be more success in the researching and 

studying of  ways to treat individuals with alcohol use disorder. 

However, if  a struggling individual’s culture and way of  life inhibits 

them from reaching out for help, several previously stated methods 

will not benefit them. For example, in some cultural groups there is 

a stigma around seeking help for mental health problems or a pref-

erence for seeking help from spiritual or community leaders over 

health professionals; people may also legitimately be leery after 

prior experiences, either personal or observed with discrimination 

in treatment settings (Modir et al., 2022). In addition, although 

alcohol use disorder does not discriminate by wealth, those who 

lack financial resources may not be able to afford adequate treat-

ment. Continuing to study this ever-growing issue and its causes 

may lead to a better understanding of  substance abuse in general, 
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and eventually the development of  more effective treatment op-

tions and methods of  prevention. When discussing alcohol abuse 

and similar problems, it is important to understand not only the 

biological, psychological, and social causes and effects, but the in-

teractions between them. Alcohol abuse does not have just one 

cause or one effect, and these causes are never only biological, one 

psychological, or only social. Any effective treatment needs to ad-

dress multiple domains of  thought and behavior. 
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Abstract

The important ecological role of  submerged aquatic vegetation 

(SAV) makes its year-to-year distribution of  significant interest 

to environmental monitoring organizations. The use of  drones 

to perform the task of  SAV monitoring through multispectral 

analyses is a promising tool to achieve a methodology that is 

automatable, repeatable, time efficient, and accessible. A prelim-

inary trial was conducted at Eagle Cove near Gibson Island on 

the Magothy River where a DJI Phantom 4 Drone with a Sentera 

special purpose camera captured multispectral digital images 

with five spectral bands. These were used to apply and compare 

four vegetation indices: Normalized Difference Vegetation 

Index (NDVI), Green Normalized Difference Vegetation Index 

(GNDVI), Modified Normalized Difference Vegetation Index 

(mNDVI), and Normalized Difference Aquatic Vegetation Index 

(NDAVI). Analyses was done using the geographic information 

systems program known as ArcGIS Pro. The images generated by 

each index show some measure of  successful identification of  SAV, 

though there are many false-positives due to a variety of  factors. 

The effectiveness of  each index in our images was estimated by 

comparing the amount of  pixels identified as SAV in the area of  
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observed SAV growth and outside of  this area. The most effective 

index was indicated to be mNDVI. This methodology will contin-

ue to be developed at AACC, and future work will aim to improve 

upon this process and to make calculations of  SAV acreage and 

density that can be compared to ground-truthed observations.

Introduction 

The abundance of  submerged aquatic vegetation (SAV) is a critical 

metric involved in the assessment and monitoring of  the biological 

health of  local waterways. SAV is defined as a rooted aquatic plant 

that grows completely underwater, and can be found throughout 

the Chesapeake Bay and its tributary rivers. SAV plays an im-

portant role in stabilizing water quality by providing oxygen to 

the water column, filtering sediment, absorbing excess nutrients, 

buffering pH, and neutralizing acidic conditions. It also protects 

shorelines from erosion, provides food and habitat for wildlife, and 

sequesters carbon dioxide (“Chesapeake Bay SAV Watchers”). 

Therefore, efforts to preserve and propagate SAV are critical, and 

the monitoring of  SAV is of  great interest to many organizations 

that work to conserve our environment.

The challenge of  mapping SAV from year to year has been 

approached with a variety of  methods, from traditional surveys 

using boats to remote sensing using airplanes and satellites. The 

Virginia Institute of  Marine Science (VIMS) conducts annu-

al surveys of  the entire Chesapeake Bay, its tributaries, and the 

Delmarva Coastal Bays by using aerial photography to collect 

multispectral digital images taken from an aircraft at an altitude 

of  approximately 13,200ft (“Monitoring Methods for SAV”). The 

aircraft-based methodology used by VIMS is useful because it cap-

tures a large amount of  data over vast distances, but it is not always 

accurate and often needs to be verified through ground-truthing 

at the local level. The use of  drones to map SAV may allow for 

more detailed and more reliable surveys to be performed on a 
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smaller scale. Drones provide a ground level local observation sim-

ilar to kayak surveys combined with an overhead sensor similar to 

crewed aircraft. Drones provide an intermediate tool in terms of  

scale and detail (Figure 1), while allowing for a methodology that 

is automatable, easily repeatable, and time efficient. Through the 

use of  computer software, drones are able to follow a programmed 

route over a study area. A key benefit of  using an automated flight 

program and image capturing process is that it is easy to keep a 

consistent flight path when monitoring the same site from year to 

year. Another benefit of  drone-based methodology is its accessi-

bility to a wide variety of  environmental organizations, many of  

which are interested in surveying only a particular river or reach 

in great detail.

Drones can capture detailed photographs in which SAV is 

visible under the surface of  the water, though it is often not enough 

to rely simply on the viewing of  images to accurately find SAV and 

distinguish it from its surroundings. Multispectral analysis offers a 

more rigorous methodology for processing the data that is captured 

Figure 1

Illustration of  the varying scales 
of  coverage and the levels of  detail 
observed from boats, drones, and 
aircraft. Coverage increases from 
left to right, while detail decreases. 

Altitudes and distances not to scale.



100  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

by the drone. The Drone Center at Anne Arundel Community 

College (AACC), in coordination with the Environmental Center 

and the Geography department, has begun the development of  a 

drone-based methodology to survey SAV using multispectral anal-

ysis. We collected data in the form of  digital images captured from 

a drone on the Magothy River at Eagle Cove near Gibson Island, 

where SAV was seen to be present. Five bands of  reflectance: red 

(R), green (G), blue (B), red edge (RE), and near-infrared (NIR) 

were captured and used to calculate vegetation indices, which are 

combinations of  reflectance in two or more bands designed to 

highlight a particular property of  vegetation. 

The presence of  chlorophyll and photosynthesis causes light 

absorption in the red region of  the electromagnetic spectrum, and 

consequently vegetation has a very low red reflectance. Due to 

internal cellular structure, vegetation also has very high reflec-

tance in the NIR region (Rowan and Kalacska). Vegetation indices 

such as the Normalized Difference Vegetation Index (NDVI) take 

advantage of  this by using the difference between NIR and red 

reflectance to highlight vegetation. Another index, the Green 

Normalized Difference Vegetation Index (GNDVI) uses green re-

flectance rather than red to estimate photosynthetic activity. These 

indices are often used to gauge the health of  crops and forests, but 

they can also be used to identify and map vegetation, including 

SAV. One study has shown that NDVI can be suitable for de-

tecting SAV, with the condition that in deeper waters the depth 

is considered (Jung et al.). However, a drawback to using NDVI 

and GNDVI in under-water settings is that NIR frequencies have 

a high degree of  absorption by the water column (Rowan and 

Kalacska). Because of  this factor, we also considered other indices 

that are designed with the aquatic medium in mind. The Modified 

Normalized Difference Vegetation Index (mNDVI) addresses the 

issue of  NIR attenuation by modifying NDVI to use the RE band 

instead of  NIR (Brooks et al.). Another index that has been shown 
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to produce good results in under-water studies is the Normalized 

Difference Aquatic Vegetation Index (NDAVI) which uses blue re-

flectance (Rowan and Kalacska).

At Eagle Cove a series of  47 overlapping images was taken, 

which allows for the use of  photogrammetric analysis methods. 

However, for the purposes of  this preliminary trial we limited 

ourselves to selecting only one set of  red, green, blue (RGB) and 

corresponding NIR/RE photos with which to work. The objec-

tive of  this project was to begin the establishment of  a process for 

image collection and analysis that can be used by AACC or other 

organizations in the future, and to identify a vegetation index that 

is effective at finding SAV. This project serves as the preliminary 

work for a future study that will be the basis of  a 2022 Department 

of  Natural Resources grant proposal.

Methodology

The drone images were captured on September 9, 2021 at Eagle 

Cove, located on the Magothy River at approximately 39° 05’ 14” 

N, 76° 25’30” W. A DJI Phantom 4 drone was mounted with a 

Sentera 5-band multispectral double 4k camera. The peak wave-

length and widths that define each band are given in Table 1. 

Images were captured using the software Pix4Dcapture to cre-

ate a pre-programmed flight route over the study area, flying at 

a programed height of  120 meters. Pix4Dcapture creates a flight 

path within a user-defined area along which the drone automat-

ically captures overlapping photos (Figure 2). Photos were taken 

looking straight down at an angle of  90° to the horizon, with a 

front overlap of  80% and side overlap of  80%. For purposes of  

documentation, water quality parameters were measured at Eagle 

Cove during the time of  our flight. A Yellow Springs Instrument 

(YSI) was used to measure standard water quality parameters, in 

addition to water clarity being measured with a Secchi disk and 

turbidity with a field kit.
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Band	 Peak Wavelength	 Width

Blue	 446nm	 60nm

Green	 548nm	 45nm

Red	 650nm	 70nm

Red Edge	 720nm	 40nm

Near-Infrared	 840nm	 20nm

The collected images were analyzed using ArcGIS pro. One 

single RGB and matching NIR/RE image were selected for anal-

ysis. Sentera cameras have two different lenses that are spaced 

Table 1

Spectral band specifications 
for the Sentera camera. 

Figure 2

Flight path in Pix4D. Camera 
icons (black boxes) show the 
location of  each photograph.
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approximately one inch apart, one for RGB and one for NIR/RE. 

This created the need for the images to be aligned with each other 

using anchor points before generating a single composite image 

that includes all five spectral bands. This composite image was 

used to calculate a variety of  different vegetation indices. 

Data

The drone-collected data is in the form of  RGB and NIR/RE dig-

ital images (Figure 3) and the composite image that combines the 

spectral bands from both into one single image.

 

The water clarity at Eagle Cove was measured to be 0.6m 

with a turbidity of  10.75 nephelometric turbidity units (NTUs). 

The parameters measured with the YSI at both surface and bot-

tom depths are shown in Table 2.

	 Surface (0.2m)	 Bottom (1.1m)

Temperature (°C)	 23.2	 22.5

Dissolved Oxygen (mg/L)	 8.75	 7.64

Salinity (ppt)	 5.79	 5.75

pH	 8.45	 8.64

Figure 3

RGB and NIR/RE images taken 
from the drone at Eagle Cove.

Table 2

YSI data from Eagle Cove.

RGB NIR/RE
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Results 

Several vegetation indices were calculated from the composite im-

age using ArcGIS Pro. Four that appeared to be potentially useful, 

NDVI, GNDVI, mNDVI, and NDAVI, were selected for further 

analysis. The images generated from the application of  these in-

dices are shown in Figure 4, and the formulas for each index are 

given in Table 3.

Index	F ormula

NDVI	 (NIR - R)/(NIR + R)

GNDVI	 (NIR - G)/(NIR + G)

mNDVI	 (RE - R)/(RE + R)

NDAVI	 (NIR - B)/(NIR + B)

Figure 4

Resulting images  
from the application  
of  vegetation indices. 

Table 3

Vegetation indices and  
corresponding formulas.

NDVI

mNDVI

GNDVI

NDAVI
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Each index converts the composite image into an image with 

one single band, shown with a black to white color gradient. Each 

pixel in the image is assigned a value between -1 and 1 based on 

the index formula, with higher values displaying brighter and low-

er values displaying darker. Since these indices are designed to 

highlight vegetation, the SAV as well as terrestrial plants are seen 

to be highlighted against the dark water surface. Some parts of  

manmade objects such as the boats are also highlighted. We would 

like to remove the noise of  terrestrial plants and manmade objects 

to view only SAV against the water surface. For each image it is 

therefore necessary to clip out a section that shows only the area 

of  the water where SAV might be found. This was done with the 

image masking tool in ArcGIS Pro which allows a polygon to be 

drawn and applied to multiple images to extract a section of  each 

image as its own layer. The mask that was used to clip out our 

study area, referred to as the “full mask”, is shown in Figure 5. 

The full mask was applied to each index-generated image. Each 

extracted image was given a new color gradient of  blue to yellow, 

which makes the images easier to view. Two examples of  the re-

sulting final images are shown in Figure 6. 

Figure 5

Masks that were used to analyze 
only a certain section of  the 
photograph, shown overlain with 
the RGB image. The full mask 
was used to examine a broad area 
where one might look for SAV 
and that excludes the dock, boats, 
and land. The SAV mask was 
used later in the analysis to look 
at only the area where SAV was 
known to be present.

Full Mask SAV Mask
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mNDVI NDAVI

While these index-generated images succeed at highlighting 

SAV, a problem with how they turned out is that they also con-

tain many highlighted pixels that are not actually representative 

of  SAV. A comparison of  each index’s effectiveness in our images 

was carried out by computing the number of  pixels at each .01 

step in the index from 1.0 to -1.0 for both the full mask and the 

SAV mask. The mask that was used to analyze only the area of  

SAV growth is shown in Figure 5, referred to as “SAV mask”. The 

count of  pixels at each step value identified as SAV in the SAV 

mask was subtracted from that in the full mask to determine how 

many pixels are not inside of  the area where SAV is expected. The 

assumption being that index returns close to positive 1 in the SAV 

mask were pixels containing SAV and the corresponding pixels in 

the count “outside SAV mask” were not SAV and would be con-

sidered a false positive. A limit of  85% success rate of  bright pixels 

in the SAV mask was chosen as a way to compare indexes.

To complete Table 4, a summation of  all pixel’s values was 

made at each step from +1 to -1 at a .01 step interval. This sum-

mation gave a total of  pixels in all bins below the index value.

Figure 6

Extracted images from  
mNDVI and NDAVI, shown 
with a blue-yellow color gradient.
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Index	 Lower Limit 	 Pixel Count	 Pixel Count	 Percentage of Pixels 
	 for SAV Pixels	 Inside SAV Mask	O utside SAV Mask	 Inside SAV Mask

mNDVI	 0.33	 166,987	 23,975	 85.6%

GNDVI	 -0.31	 116,558	 17,750	 84.8%

NDVI	 -0.17	 89,342	 13,989	 84.3%

NADVI	 -0.09	 19,381	 2,529	 87.0%

A ratio of  Pixels Count Inside SAV Mask/Pixel Count 

Outside SAV Mask was then determined with 85% being used as 

the acceptable success rate. This value was chosen because above 

85% there was a sharp increase in the number of  pixels outside 

the SAV mask for that index. The lower limit that yielded approxi-

mately 85% of  identified pixels in the expected area corresponded 

to a pixel count inside the SAV mask area. The pixel counts inside 

SAV mask in Table 4 indicate the relative effectiveness of  each in-

dex at 85% success rate. 

Conclusions

The study area at Eagle Cove was observed to have SAV growing 

along the shoreline, as shown in Figure 7. The images generated 

using vegetation indices appear to indicate the presence of  SAV 

along the shore, and in each case provide a more defined and visu-

ally identifiable picture of  the precise area containing SAV when 

compared to the RGB photo. The use of  multispectral analyses 

provides confirmation that what is seen as a dark area under the 

surface is in fact vegetation showing high NIR reflectance. One 

notable aspect of  the study area was a patch of  SAV broaching 

the water surface (Figure 7). This area appears very bright when 

any index is applied. These images may be used in future study to 

compare the spectral profile of  SAV that is at the water surface 

Table 4

Counts of  pixels identified as 
SAV and corresponding lower 
limits for each index.
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with that of  SAV that is below the surface.

 A noticeable problem with all four final images is the area 

of  high return in the deeper part of  the water which appears as 

a sparse cloud of  highlighted points (Figure 8). This is unlikely to 

be SAV. The exact source of  this error is not known. It could be 

due to a variety of  factors including reflectance problems, arti-

facts of  image manipulation, or organic matter suspended in the 

water column. Based on knowledge of  how SAV grows along the 

shoreline and how far from the shore it typically grows and at what 

depth, an educated guess could be made as to what highlighted 

areas are a result of  this “noise” and what areas are SAV. An im-

portant challenge of  future work will be to reduce the prominence 

of  these errors. Another consideration of  future work could be 

how to separate SAV from algae and other types of  phytoplankton 

that are spectrally similar.

Among the four indices that were tested, mNDVI is shown 

to be the most effective based on the analysis method outlined in 

the results section. It identified the highest number of  pixels in 

the SAV Mask within the success range used in the study. GNDVI 

was the second most effective index but yielded 30% less pixels in 

the SAV Mask than mNDVI. NDAVI stood out as having an ex-

tremely low count of  pixels in the SAV mask, with 88% less than 

mNDVI. When visually comparing mNDVI and NDAVI (Figure 

Figure 7

Areas of  observed SAV growth at Eagle Cove are 
shown circled in black. A patch of  SAV adjacent to 
the dock was seen to be broaching the water surface, 
circled in red.

Figure 8

An area of  higher return (circled 
in red) that is not SAV is present 
in all four indexes.
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6), it is apparent that NDAVI has a higher prominence of  noise 

that is harder to separate from what is really SAV. These state-

ments of  effectiveness apply only to these particular images, and 

not the viability of  these indices in every case. There are many 

factors that can be adjusted in future trials to maximize the appli-

cation of  these indices, and thus produce more accurate images 

of  SAV presence. These images, however, provide a useful prelim-

inary trial for identifying what went well in this process, learning 

what needs to be improved on, and for providing a sense of  what 

vegetation index may be the most worthwhile to pursue in future 

trials. 

It is important to note that several environmental conditions 

determine the ideal time frame for the use of  a drone to photo-

graph SAV. The most important factor is the angle of  sunlight at 

the time of  flight. The sun being directly overhead allows for the 

least amount of  light scattering by the water and allows light to 

penetrate deeper into the water column (Rowan and Kalascka). 

Another factor of  importance is the tide. A lower tide will provide 

less of  an obstacle to the camera when detecting submerged grass-

es. Flights should be conducted during the lowest tide possible, 

and should be avoided during the highest tides. Additionally, water 

turbidity, the clarity of  the water as affected by suspended parti-

cles, in the study area is also a factor. Data collection during surges 

in turbidity, such as up to 48 hours after heavy rainfall, should be 

avoided. As it may not be possible to achieve ideal conditions in 

each of  these categories on any particular day, drone operators 

should seek the best possible balance of  all factors when flying 

for data collection. Recording water quality parameters for each 

flight may help to understand the distribution of  SAV in the area, 

as well as how images from the drone are affected by water clarity. 

A noteworthy challenge of  photogrammetric analysis over water 

surfaces is the lack of  key points that can be matched between im-

ages due to the high uniformity and reflectiveness of  water. Pix4D 
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recommends having at least 30% land area in each image when 

completing photogrammetric analysis over water, (“Is it Possible to 

Generate the Orthomosaic of  Water Surfaces?”). 

Our future work will continue to determine a process by 

which drone-captured multispectral images can be reliably  

analyzed by ArcGIS Pro to yield an accurate count of  SAV pixels 

and their corresponding acreage and density. An aim of  future 

study should be to make acreage and density calculations and to 

compare the results to ground-based traditional surveys of  the 

same site. 
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