
Journal of
Emerging
Scholarship

The Anne Arundel Community College

Volume 1
May 2022

Cover

Deborah Judy

AACC Visual Arts Student

Emergence, 2022

Oil on panel, 17" x 22"

Jason Burkholder, B.S.	 3

Evaluating the Utility of Enterococcus Specific Primers

Hannah Claggett	 19

The Restoration of Submerged Aquatic Vegetation

in the Chesapeake Bay

Mollie Crossman and Jeremy Snyder	 31

Optimizing Quantitative PCR to Distinguish Between

Human and Canine Bacterial Samples

Ashley Dyjack	 50

An Examination of Effort-Based Grading Effectiveness

Thao-Nhi Luu and Maria Nicos Alain Pasaylo	 61

Exploring the Hill Cipher through Linear Algebra and Python

Lauren E. Street	 88

Alcohol Abuse: Causes, Effects, and Potential Solutions

through a Biopsychosocial Lens

Alexander Thompson	 97

Multispectral Analyses on Drone-Captured Images

for Submerged Aquatic Vegetation (SAV) Monitoring

Journal of
Emerging
Scholarship

The Anne Arundel Community College

Volume 1
May 2022

2021–2022 Editorial Board

Lance Bowen, Ph.D.
Dean, School of Science,
Technology and Education

Mickey Dehn, M.S.
Associate Professor,
Department of Biology

Erik Dunham, M.F.A.
Associate Professor,
Department of Visual Arts

Karen Egypt, M.M.
Director of Data Analytics, PRIA

Christine Goldman, M.S.
Administrative Assistant
to the Dean

Jennifer Schuster, M.A.
Assistant Professor,
Department of Visual Arts

Cindy Steinhoff, M.S.L.S., M.B.A.
Professor and Director
of the Library

Dear reader,
It is with great excitement that we present here the first edition

of the Anne Arundel Community College Journal of Emerging

Scholarship. The goal of this journal is to provide an outlet for

peer-reviewed publication of collegiate undergraduate student re-

search. The multidisciplinary approach of this endeavor is to

reach as broad of an audience as possible and help students devel-

op critical skills of scientific inquiry.

While we hope that our transfer-bound students who begin

research projects at AACC will be inspired to continue this path

at four-year institutions, all AACC students benefit from the skills

gained by engaging in research. In addition to developing techni-

cal skills specific to a particular field of study, engaging in research

develops other skills which are widely in demand by nearly all in-

dustry employers, such as effective team collaboration, writing,

presentation, analysis, and critical thinking. Participation in re-

search also fosters information literacy and helps students become

critical consumers of the data they encounter in their daily lives.

We want to extend gratitude to the students, mentors, review-

ers, and partners who have dedicated countless hours to creating

the original work contained within this volume.

Sincerely,

The 2021–2022 Editorial Board

Evaluating the Utility of Enterococcus Specific Primers  3

 Jason Burkholder, B.S.

Evaluating the Utility
of Enterococcus
Specific Primers
Abstract

Enterococci are the preferred fecal indicator bacteria (FIB) for

monitoring the safety of recreational beaches. A reliable and

cost-effective method to identify the species of origin for entero-

cocci-contaminated rivers is essential for decreasing the risk to

human health. In this study human and canine fecal samples were

analyzed in polymerase chain reaction (PCR) studies with primers

reported to amplify targets specific to enterococcal species with the

goal of identifying the fecal source. While the primers successfully

amplified the target sequences in many samples, amplification in

non-target species made identifying one, or a small set of prim-

ers, that reliably discriminate between fecal source species more

challenging. Alignment and comparison of PCR product se-

quences were conducted with the goal of designing novel primers

with increased specificity. Analysis of multi-locus sequence typing

(MLST) data suggested that specific nucleotide variations within

loci found in species-specific enterococcal strains might be exploit-

ed to determine the source of contamination in local waterways.

To this end, primers for two target loci were designed specifical-

ly for nucleotide sequences more frequently isolated from canine

enterococcal samples and initial screening assays were conduct-

ed to optimize conditions and discriminate between source DNA

without success. Collection of additional species-specific bacterial

samples and additional control type strains are needed to better

distinguish between the species of interest in this study.

Key words

fecal indicator bacteria

microbial source tracking

Enterococcus

multi-locus sequence typing

Faculty Mentor

Tammy Domanski, Ph.D.
Professor, Biology Department
Director, Environmental Center at
Anne Arundel Community College

4  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

Introduction

Contamination of recreational waters with bacteria from fecal

contamination poses a significant health risk to humans (Cabelli et

al. 1979). Increasing water temperatures driven by climate change,

increased incidence and severity of rain events bringing more

runoff, larger impervious surfaces resulting in less absorption of

runoff before entering waterways, and the aging sewer infrastruc-

ture, all contribute to more frequent occurrences of beach closures

due to high bacterial concentrations (Rose et al. 2001). To develop

programs that decrease contamination and to better understand

the risk to humans, it is essential to not only quantify the bacterial

load in water, but to identify the relative contribution from differ-

ent contributing species.

Enterococcus sp. are prevalent in bird, mammal and to some

extent, insect and reptile fecal material, and comprise approxi-

mately 1% of the bacteria in the human large intestine (Dubin

and Pamer, 2014). Other species contain a similarly complex and

varied array of bacteria (Layton et al. 2010; Harwood et al. 2014).

The correlation between levels of fecal bacteria and illness

in humans has long been recognized, and the EPA has identified

enterococci as fecal indicator bacteria (FIB), the measurement of

which are used to determine the safety of recreational swimming

beaches and seafood harvesting waters (Cabelli et al. 1979; US

EPA, 2012). High levels in recreational waters can result in beach

closures and halt fish and oyster harvests. The standard method

for tracking FIB levels utilizes selective media and direct colony

counting (US EPA, 2009). Monitoring for all possible pathogens

that may be in contaminated water is an impossibility, so the use

of FIB has made it possible to track a common set of organisms,

compare many locations and set thresholds for safety (Leclerc et

al. 2001).

Microbial source tracking (MST) has previously been used

to identify the source of enterococci and other bacteria associated

Evaluating the Utility of Enterococcus Specific Primers  5

with fecal contamination found in environmental waters (Leclerc

et al. 2004) and has been used to identify the source in bacterial in-

fection outbreaks from sources including food and water (McRobb

et al 2015). Identification of the contamination source is neces-

sary for developing plans to eliminate the source, such as repairing

leaks, upgrading septic systems and educating the public on pet

waste clean-up. MST methods, such as restriction analysis, quanti-

tative polymerase chain reaction (qPCR), and DNA sequencing of

one or several loci, have been used with varying success (Foley et

al. 2009; Homan et al. 2002; Ruiz-Garbajosa, 2006). Polymerase

chain reaction (PCR) potentially provides an inexpensive way to

identify the source of fecal contamination. Many target organisms

have been proposed for PCR-based MST (Harwood et al. 2014).

However, methods that target species other than Enterococcus re-

quire processing of the sample without initially quantifying the

level of contamination, adding cost and wasted effort. A method

that first screens for enterococcal contamination followed by MST,

would be more efficient. To this end a project was initiated to iden-

tify or design primer sets that discriminate between fecal source

species responsible for Enterococcus contamination.

Methods

Fecal sample collection
Canine fecal samples were obtained from local veterinarians (D

samples) and dog owners (S samples). Each D sample contained

fecal matter combined from 4 to 10 dogs (n=17). Individual hu-

man samples were obtained from anonymous volunteers (n=3;

P002, P003, P004), and sewage samples were provided by several

Anne Arundel County Water Reclamation Facilities (WRF) (n=8).

Enterococcus faecalis NCTC 775, a positive control for Enterococcus fae-
calis-specific primers, was obtained from Biomerieux. Enterococcus
faecium 700221, a positive control for E. faecium-specific primers, was

obtained from American Type Culture Collection. Environmental

6  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

samples were collected from local waterways that contained high

concentrations of enterococci (over 1000 bacteria/100 mL, ap-

proximately 10 times above the acceptable threshold).

Enterococcus isolation and genomic DNA isolation
Approximately 1 mL of liquid WRF influent or 0.1 mg of fecal

matter suspended in sterile water and passed through a sterile

0.45-micron filter. Filters were placed on mE agar (Difco) selecting

for Enterococcus sp. After incubation at 41 degrees Celsius for 24

hours, colonies with a blue halo were scraped, combined and sus-

pended in sterile water. The Amresco Cyclo-Prep Genomic DNA

Isolation kit was used for all DNA extractions (Avantor).

Primer selection and Polymerase Chain
Reaction conditions
The primers chosen, their reported specificity and references are

shown (Table 1). Primers were purchased from Integrated DNA

Technologies (Coralville, USA).

Amplification reactions included 1 unit of Taq polymerase

(New England Biolabs), 1X buffer, 300 nM dNTPs, 1.5 mM

MgCl2, 1mM forward primer, 1mM reverse primer, 2 µl of the

Table 1

Primer target and specificity.

Evaluating the Utility of Enterococcus Specific Primers  7

template in a final volume of 50 µl. Samples were placed in a ther-

mocycler and run for 30 cycles. Each cycle incubated samples for

60 sec at 94°C, 60 sec at an annealing temperature specific for a

given primer set (Table 2), and 60 sec at 74°C.

Analysis of PCR products
Aliquots of reactions were analyzed on 1.5% agarose alongside

a 100 base pair standard (Amresco EZ-vision) and stained with

ethidium bromide to estimate amplification product size. Samples

that resulted in amplification of a product of the expected size

were classified as positives. A sample agarose gel in Figure 1 high-

lights the expected product sizes. Samples that did not result in

amplification, therefore no band on the agarose gel, were classi-

fied as negatives, and those with multiple bands were placed into

a separate group. Once samples were verified they were sent out

to Genewiz for sequencing to further verify that target sequences

were amplified and to compare sequences.

Table 2

Primer sequences, conditions
and predicted product size.

Figure 1

Agarose gel illustrating expected amplification product sizes. Each reaction
contained Enterococcus faecium strain 700221 genomic template with a
different primer set: 1-Esp (680 bp); 2-CIUM (512 bp); 3-ENT376
(220 bp); 4-IS16 (547 bp); 5-VanA (1029bp).

8  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

Analysis of MLST
MLST is a technique introduced in the early 1990s utilizing a

limited number of short sequences from several loci within bac-

terial genomes capable of assigning a sample to a specific strain

(Maiden et al. 1998). Sequence data from the Public Database for

Molecular Typing and Microbial Genomic Diversity (pubMLST)

suggested that specific nucleotide variations within loci found in all

enterococcal strains might be exploited to determine the source of

enterococci in contaminated local waterways. The MLST strain

typing method typically employs sequence comparisons at seven

loci to assign a sample to a specific strain. In database searches of

sequences from many sources, it was found that the sequences of

two loci, psts and atpa, were aligned and compared, and primers

were designed specifically for nucleotide sequences more frequent-

ly isolated from canine enterococcal samples. Sequences in the

database were aligned to look for individual nucleotide differences

prevalent between loci amplified from bacteria from different host

species. The analysis was performed in Ugene (Okonechnikov et

al. 2012).

Results

PCR results
Amplification results from assays performed to evaluate species se-

lectivity of primer sets were promising. Type strain controls, E.
faecalis NCTC775 and E. faecium 700221, performed as expect-

ed with each primer set (Table 3). NCTC775 is a non-virulent

strain that does not contain the esp gene, while E. faecium 700221 is

known to contain both the esp and IS16 locus. The number of bac-

terial DNA samples from individuals was very small in this study

(n=3), and none of the samples obtained were from clinical set-

tings. Two of the three samples showed amplification with ENT,

ENT376 and CIUM primers, as would be expected.

Sewage samples collected from waste reclamation facilities

Evaluating the Utility of Enterococcus Specific Primers  9

around Anne Arundel County contain fecal matter from large

populations, so reflect the complexity of bacterial populations in

humans. One sewage sample, PAT, was negative for amplifica-

tion by the ENT376 primer set, although those primers are the

most inclusive, reported to amplify sequences from a variety of

Enterococcus species. The sequence targets associated with poten-

tially more virulent enterococcal species, esp and IS16, were found

in 57% and 86% of sewage samples, respectively (Table 3).

The amplification results with bacterial DNA from dog fecal

samples, representing over 35 individual dogs, were encouraging

Table 3

Summary of PCR Results.

10  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

for several reasons. All of the samples from dog fecal material suc-

cessfully amplified the ENT376 target, confirming the reports that

ENT376 is the least selective of the primer sets used. Over 88%

of the samples from dogs were positive for the E. faecium target

(CIUM primer set), while only 69% were positive for E. faecalis
(ENT primer set). Of note, only 13% of the samples obtained

from dog feces were positive for the presence of the esp gene, and

29% were positive for IS16.

Environmental samples collected from area waterways on

days associated with high concentrations of Enterococcus sp. were

analyzed and compared to look for patterns that might suggest the

species responsible for the contamination. Six of the seven samples

were positive for amplification with ENT376, suggesting the pres-

ence of at least one species of Enterococcus. The two CG samples,

CG and CG2, were collected on different days. Both were posi-

tive for ENT376, while CG was positive for ENT, suggesting the

presence of Enterococcus faecalis, and CG2 was positive for CIUM,

suggesting the presence of E. faecium. None of the environmental

samples were positive for amplification of esp, and only two, SS

and EGO were positive for IS16.

Sequence Analysis
To further analyze and compare DNA targets that were amplified,

PCR products from a sampling of reactions were sequenced, and

compared to sequences with the National Library of Medicine’s

National Center of Bioinformatics (NLM NCBI) database to con-

firm that the correct targets were amplified (Table 4). In each case

the expected product was amplified with near 100% identity to

predicted sequences (Table 2), with one caveat. The IS16 prim-

er set was designed to recognize human pathogenic, clinical E.

faecium strains, but bacterial DNA template from both dog and

human fecal samples resulted in amplification of identical prod-

ucts with the highest similarity to a human isolate, with a very

Evaluating the Utility of Enterococcus Specific Primers  11

Table 4

Sample PCR products sequenced.

close second match to a dog isolate.

Sequence data from a subset of amplification products

were aligned and compared to each other. Of the 11 amplifi-

cation products analyzed, only S1 and S15 products with ENT

primers contained nucleotide variations. More variation was ob-

served when comparing the sequences from amplification with

the ENT376 primer set. Of 15 samples that were sequenced 5 of

them contained at least one nucleotide difference. Only two sam-

ples from amplifications with ESP primers were sequenced and the

sequences were identical. Both of these samples were from sewage

effluent, MAYO and SP1. From the IS16 primer set there were

4 samples sequenced. These had variations in at least two of the

four samples, but because of low quality sequence data confidence

in the variations was also low.

MLST database alignments and primer design
Alignment of a portion of the E. faecium psts locus revealed that

of the 105 psts alleles in the pubMLST, alleles 11 and 7 were most

frequently associated with bacterial DNA from canine sourc-

es, while allele 1 was more often associated with bacterial DNA

12  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

from human sources (Jolley et al. 2018). Nucleotide differences

were used to design primers able to specifically amplify DNA from

psts allele 11 (Figure 2 and Table 2). One such primer is indicat-

ed with yellow highlighting. Initial assays involved varying PCR

conditions, specifically using different annealing temperatures that

would affect the stability of primer binding. Higher annealing tem-

peratures require a perfect match between primer and target and

lower temperatures, potentially allow binding and amplification

even if there are mismatches between the primer and the target.

In amplification reactions comparing templates from sewage sam-

ples, SP1 and Mayo, and dog samples, D3 and S5, an annealing

temperature that was able to differentiate between sources, there-

fore allowing amplification from templates of one species but not

the other, was not found (data not shown).

In much the same way that the psts locus was analyzed, mul-

tiple atpa sequences from the pubmlst E. faecalis database were

aligned to identify alleles frequently associated with canine sources.

MLST allele 15 was more often associated with bacteria obtained

from dogs than humans. Therefore, primers were designed that

would target only allele 15. In PCR reactions containing the at-
pa-specific primers and DNA template from sewage samples, SP1

and Mayo, and canine samples, D3 and S5, varying annealing

temperatures either resulted in successful amplification in all re-

actions or no amplification in all reactions. Similar to the results

Figure 2

Comparison of psts allele sequences from the pubMLST E. faecium
database. Sequence differences are underlined and the sequence chosen
for a potential species-specific primer is highlighted.

Evaluating the Utility of Enterococcus Specific Primers  13

observed in the psts assays, nucleotide differences were either not

present in the template or not significant enough to cause tem-

perature-dependent differential annealing of primers at the target

sites (data not shown).

Sequencing of a subset of amplification products revealed that

only the product from bacterial sample P002 with primer set atpa15

contained a nucleotide difference (Figure 3). Interestingly P002 was

also the only one of the 7 sequences amplified with the psts11 prim-

er set that contained nucleotide differences (data not shown).

Discussion

Determining bacterial concentration in a water sample, import-

ant to determining safety for recreational use, does not provide

information on the source of contamination. Consequently, con-

siderable effort has been made developing MST methods (Meays

et al. 2004). Enterococcus sp. have emerged as the recommended

FIB for both fresh and brackish waters, making them a conve-

nient target for this study since samples identified as having high

Figure 3

Sample of the atpa sequence alignment of E. faecium amplified using the
atpal15 primer set and sequenced by Genwize. Nucleotide variations are
underlined and highlighted.

14  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

FIB concentration can be targeted for MST without the need for

collection of an additional sample, without the need for collection

of a larger sample, and without the wasted effort of processing a

sample that is later found to lack contamination.

Starting with primers previously reported to have specificity

for one, or a subset of FIB species (Table 1), studies were under-

taken to assess the feasibility of similar studies with samples from

local sources including Enterococcus bacterial DNA from human,

canine, sewage treatment facilities, and local rivers. The ENT

and ENT376 primer sets target the 16s rRNA gene in Enterococcus
faecalis and multiple Enterococcus species, respectively. The CIUM

primer set is specific for the 16s rRNA gene in Enterococcus faecium,

while the esp and IS16 primer sets target sequences originally as-

sociated with virulence genes in virulent strains of E. faecium, but

also present in some E. faecalis strains. In addition, reports utiliz-

ing esp and IS16 primers relied on the association of their targets

with bacterial samples from human clinical settings, both of which

have been linked to vancomycin resistance (Werner et al. 2011;

Willems et al. 2001).

Looking more closely at the amplification results in Table

3, the control type strain E. faecalis NCTC 775 illustrated the ex-

pected pattern of primer specificity, positive for amplification by

primers specific for Enterococcus faecalis and multiple Enterococcus
species, ENT and ENT376, respectively, and lacking amplification

of the esp and IS16 targets, associated with bacteria from clinical

human samples (Mohamed et al. 2018; Scott et al. 2005; Werner

et al. 2011). E. faecium 700221 genomic template resulted in am-

plification of the CIUM target, specific for E. faecium, and the

virulence specific esp and IS16 targets as expected (Table 3 and

Figure 1).

The low number of individual human fecal samples (n=3) in

this study complicates statistical analysis of the results. While the

sewage effluent (n=8) provided a larger human population, the

Evaluating the Utility of Enterococcus Specific Primers  15

material entering treatment plants does not only contain human

fecal matter. Sewage influent potentially contains animal feces and

chemicals that may remove some bacterial species of study. To be

confident in correlations between primer specificity and human

fecal sources, future studies will require additional human samples

from both community and clinical settings.

Although the ESP and IS16 primer sets were not able to

distinguish between human and canine fecal sources with 100% se-

lectivity, this finding is not entirely surprising. First, work by Ahmed

(2008) evaluating sensitivity of the ESP primer set, demonstrated

that about 91% of sewage and septic samples were esp positive

with sensitivity between 67% and 100% depending on the type

of sample. The findings in this study showed esp-positive results

in 60% of human and sewage samples tested, a value not signifi-

cantly lower than earlier results. Second, a recent study reported

that 29% of Enterococcus from canine fecal samples were esp-pos-

itive (Stępień-Pyśniak et al. 2021). In this study 13% of canine

samples were esp-positive. These findings suggest that esp-carry-

ing Enterococcus strains are moving from human clinical settings to

human and animal populations outside of clinical settings, which

will adversely affect the success of using esp as a species-selective

target. An increase in genetic similarities in the bacteria found

in humans and pet hosts will continue to rise as we live in close

proximity to each other (Song et al. 2013). Results with IS16 were

similar. In this study 60% of bacterial samples from human and

sewage samples were positive for IS16, and 29% of samples from

dogs were positive for IS16. While a study by Werner reported

100% sensitivity in over 100 samples obtained from humans in a

clinical setting, less than 5% of samples collected outside of hos-

pitals were positive for IS16 (Werner et al. 2011). In another study

evaluating a transposon related to the IS16 sequence in samples

from dogs, researchers proposed exchange between humans and

dogs to explain canine samples positive for the transposon (Simjee

16  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

References

Ahmed MO, Baptiste KE. 2018. Vancomycin-resistant enterococci: a review of antimicro-

bial resistance mechanisms and perspectives of human and animal health. Microb

Drug Resist. 24(5):590–606. doi:10.1089/mdr.2017.0147

Cabelli VJ, Dufour AP, Levin MA, McCabe LJ, Haberman PW. 1979. Relationship of

et al. 2002).

As reported in several other studies, some samples collected

from canine and human fecal samples for this study demonstrat-

ed similar amplification patterns when using primers that were

designed to discriminate between species (Song et al. 2013,

Stępień-Pyśniak et al. 2021). These findings may make some mo-

lecular MST methods invalid in the coming years. Consequently,

additional nucleotide differences need to be identified, using

alignments such as those performed in this study with atpa and

psts alleles (Figures 2 and 3). Future studies will include larger sam-

ple sizes to better analyze the specificity of the atpa15 and psts11

primer sets and a wider range of annealing temperatures to iden-

tify allele-specific amplification conditions. Other methods such as

exploiting known single nucleotide polymorphisms (SNPs), which

are changes in a single nucleotide, will be explored. Building

from a study using known SNPs (Rathnayake et al. 2011), a se-

ries of primers could be designed to recognize SNPs specific to

Enterococcus from a single species.

Acknowledgments

The authors would like to thank communities around Anne

Arundel County that support the Operation Clearwater monitor-

ing program and provided funding to develop molecular methods

for quantifying and identifying the source of contamination in

local rivers. Thanks also goes to the AACC Biology laboratory

technical staff that has supported our efforts by providing valuable

assistance in finding reagents, setting up equipment and trouble-

shooting issues.

Evaluating the Utility of Enterococcus Specific Primers  17

microbial indicators to health effects at marine bathing beaches. Am J Public

Health. 69(7):690–696. doi:10.2105/ajph.69.7.690

Dubin K, Pamer EG. 2014. Enterococci and their interactions with the intestinal microbi-

ome. Microbiol Spectr. 5(6). doi: 10.1128/microbiolspec.bad-0014-2016

Foley SL, Lynne AM, Nayak R. 2009. Molecular typing methodologies for microbial source

tracking and epidemiological investigations of Gram-negative bacterial foodborne

pathogens. Infect Genet Evol. 9(4):430–440. doi: 10.1016/j.meegid.2009.03.004

Homan WL, Tribe D, Poznanski S, Li M, Hogg G, Spalburg E, Embden JDA van, Willems

RJL. 2002. Multilocus sequence typing scheme for enterococcus faecium. J Clin

Microbiol. 40(6):1963–1971. doi:10.1128/JCM.40.6.1963-1971.2002

Jolley KA, Bray JE, Maiden MCJ. 2018. Open-access bacterial population genomics:

BIGSdb software, the PubMLST.org website and their applications. Wellcome

Open Res. 3:124. doi:10.12688/wellcomeopenres.14826.1

Layton, BA, Walters, SP, Lam, LH, Boehm, MB. 2010. Enterococcus species distribution

among human and animal hosts using multiplex PCR. J Appl Microbiol. 109(2):539-

547. doi: 10.1111/j.1365-2672.2010.04675.x

Leclerc, H, Mossel, DAA, Edberg, SC, Strujik, CC. 2001. Advances in the bacteriology of

the coliform group: their suitability as markers of microbial water safety. Annu Rev

Microbiol. 55: 201-234. doi: 10.1146/annurev.micro.55.1.201

Maiden MCJ, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou J, Zurth

K, Caugant DA. 1998. Multilocus sequence typing: a portable approach to the iden-

tification of clones within populations of pathogenic microorganisms. P Natl Acad

Sci USA. 95(6):3140–3145. doi:10.1073/pnas.95.6.3140

McRobb E, Sarovich DS, Price EP, Kaestli M, Mayo M, Keim P, Currie BJ. 2015. Tracing

melioidosis back to the source: using whole-genome sequencing to investigate an

outbreak originating from a contaminated domestic water supply. J Clin Microbiol.

53(4):1144–1148. doi:10.1128/jcm.03453-14

Meays CL, Broersma K, Nordin R, Mazumder A. 2004. Source tracking fecal bacteria

in water: a critical review of current methods. J Environ Manage. 73(1): 71-79.

doi:10.1016/j.jenvman.2004.06.001

Okonechnikov K, Golosova O, Fursov M, UGENE team. Unipro UGENE: a unified

bioinformatics toolkit. Bioinformatics. 2012;28(8):1166–1167. http://dx.doi.

org/10.1093/bioinformatics/bts091

Rathnayake IU, Hargreaves M, Huygens F. 2011. Genotyping of Enterococcus faecalis and

Enterococcus faecium isolates by use of a set of eight single nucleotide polymorphisms.

J Clin Microbiol. 49(1):367–372. doi:10.1128/jcm.01120-10

Rose JB, Epstein PR, Lipp EK, Sherman BH, Bernard SM, Patz JA. 2001. Climate

variability and change in the United States: potential impacts on water- and food-

borne diseases caused by microbiologic agents. Environ Health Perspect. 109(suppl

2):211–221. doi:10.1289/ehp.01109s2211

Ruiz-Garbajosa P, Bonten MJM, Robinson DA, Top J, Nallapareddy SR, Torres C, Coque

TM, CantónR, Baquero F, Murray BE, et al. 2006. Multilocus sequence typing

18  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

scheme for enterococcus faecalis reveals hospital-adapted genetic complexes in a

background of high rates of recombination. J Clin Microbiol. 44(6):2220–2228.

doi:10.1128/jcm.02596-05

Ryu H, Henson M, Elk M, Toledo-Hernandez C, Griffith J, Blackwood D, Noble R,

Gourmelon M, Glassmeyer S, Santo Domingo JW. 2013. Development of quan-

titative PCR assays targeting the 16S rRNA genes of enterococcus spp. and their

application to the identification of enterococcus species in environmental samples.

Appl Environ Microbiol. 79(1):196–204. doi:10.1128/aem.02802-12

Scott TM, Jenkins TM, Lukasik J, Rose JB. 2005. Potential use of a host associated molec-

ular marker in enterococcus faecium as an index of human fecal pollution. Environ Sci

Technol. 39(1):283–287. doi:10.1021/es035267n

Simjee S, White DG, McDermott PF, Wagner DD, Zervos MJ, Donabedian SM, English

LL, Hayes JR, Walker RD. 2002. Characterization of Tn1546 in vancomycin-re-

sistant Enterococcus faecium isolated from canine urinary tract infections: evidence

of gene exchange between human and animal enterococci. J Clin Microbiol.

40(12):4659-65. doi:10.1128/JCM.40.12.4659-4665.2002

Song SJ, Lauber C, Costello EK, Lozupone CA, Humphrey G, Berg-Lyons D, Caporaso

JG, Knights D, Clemente JC, Nakielny S, et al. 2013. Cohabiting family mem-

bers share microbiota with one another and with their dogs. eLife 2:e00458 doi:

10.7554/eLife.00458

Stępień-Pyśniak D, Bertelloni F, Dec M, Cagnoli G, Pietras-Ożga D, Urban-Chmiel R,

Ebani VV. 2021. Characterization and comparison of Enterococcus spp. isolates

from feces of healthy dogs and urine of dogs with UTIs. Animals. 11(10):2845.

doi:10.3390/ani11102845

[US EPA] US Environmental Protection Agency. 2009. Method 1600.1: Enterococci in

water by membrane filtration using membrane-Enterococcus indoxyl-β-D-glucoside

agar (mEI). Washington (DC): US Environmental Protection Agency. Report No.:

EPA-821-R-09-016

[US EPA] US Environmental Protection Agency. 2012. Recreational water quality criteria.

Washington (DC): US Environmental Protection Agency. Report No.: 820-F-12-058

Werner G, Fleige C, Geringer U, van Schaik W, Klare I, Witte W. 2011. IS element, IS16,

as a molecular screening tool to identify hospital-associated strains of Enterococcus

faecium. BMC Infect Dis. 11:80-87. doi:10.1186/1471-2334-11-80

Willems RJ, Homan W, Top J, van Santen-Verheuvel M, Tribe D, Manzioros X, Gaillard

C, Vandenbroucke-Grauls CM, Mascini EM, van Kregten E, et al. 2001.Variant esp

gene as a marker of a distinct genetic lineage of vancomycin-resistant Enterococcus

faecium spreading in hospitals. Lancet. 357(9259):853-5. doi:10.1016/

S0140-6736(00)04205-7

Zhang Z, Schwartz S, Wagner L, Miller W. 2000. A greedy algorithm for aligning DNA

sequences. J Comput Biol. 7(1-2):203–214. doi:10.1089/10665270050081478.

The Restoration of Submerged Aquatic Vegetation in the Chesapeake Bay  19

Hannah Claggett

The Restoration of
Submerged Aquatic
Vegetation in the
Chesapeake Bay
Abstract

Submerged Aquatic Vegetation (SAV) is critical to maintaining

water quality and providing food and shelter for numerous estu-

arine organisms. As part of a larger project to restore SAV in the

Chesapeake Bay, the goals of this research project were to identify

healthy beds for seed harvesting, harvest seeds from four native

SAV species and refine the seed so that it could be stored until dis-

persal for restoration purposes. Through collaboration between

Shore Rivers, Maryland Department of Natural Resources and

the Anne Arundel Community College Environmental Center,

seeds collected in the summer of 2021 will be dispersed in 2022,

with the ultimate goal of restoring one acre of SAV. Four types of

native aquatic plants, Ruppia maritima (widgeon grass), Zannichellia
palustris (horned pondweed), Stuckenia pectinata (sago pondweed),

and Potamogeton perfoliatus (redhead grass) were collected into 20

baskets per species and then processed in a turbulator to separate

the seed. After turbulating, the plant material was further pro-

cessed through a series of screens to refine the pure seed, which

was later isolated and placed into jars with a salt solution. Over

the winter, seeds were stored in the jars until they will be mixed

with sand and dispersed into the bay for future restoration proj-

ects. More than 1,000,000 seeds were collected this summer from

all four species combined, and over 100 hours of volunteer time

went into the seed processing/refining process.

Key words

Submerged Aquatic Vegetation

restoration

turbulator

seed processing

Faculty Mentor

Susan Lamont, Ph.D.
Professor, Biology Department

20  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

Introduction

Submerged Aquatic Vegetation (SAV) plays a crucial role in main-

taining the health of the bay ecosystem. SAV is composed of a

diverse collection of plant species that are located beneath the

water surface and are entirely submerged except during low tide.

There are over 20 species of SAV located in the Chesapeake Bay

watershed (Chesapeake Bay Program, 2020). SAV beds help to

absorb excess nutrients and trap particulate matter such as sand

and silt that often cloud the water, suffocating and killing marine

life (Chesapeake Bay Program, 2020). These beds provide shel-

ter, habitat, and a food source for many organisms, especially

waterfowl (Chesapeake Bay Program, 2020). SAV beds serve as a

general indicator of the overall health of the Chesapeake Bay due

to their sensitivity to water quality changes (Blankenship, 2021).

When water quality improves, the abundance and quality of the

Figure 1

Abundance of SAV 1984–2020
(Chesapeake Bay Progress).

Estimated Additional Acreage

Submerged Aquatic Vegetation Observed

The Restoration of Submerged Aquatic Vegetation in the Chesapeake Bay  21

aquatic vegetation beds are affected positively and tend to improve

(Blankenship, 2021).

After several years of continual growth in acreage of SAV

beds in the Chesapeake Bay, total acreage of SAV declined 7% in

2020 – the second consecutive year of SAV decline since peaking

three years ago (Blankenship, 2021) (Fig. 1). However, the pres-

ence of underwater grasses often shows trends of a boom and bust

cycle, as some grasses are more sensitive to changes in water qual-

ity than others and will rapidly decline one year, but flourish the

next year such as Ruppia maritima (Blankenship, 2021). According

to Brooke Landy, a biologist with the Maryland Department of

Natural Resources, “It’s important to keep in mind that last year’s

decrease, and the decrease in 2019, didn’t represent a loss of a

long-term abundance and distribution, it was a decrease from a

relatively recent expansion” (Blankenship, 2021). This emphasizes

the importance of protecting and maintaining stable underwater

grass populations.

In the Chesapeake Bay, SAV restoration planting efforts be-

gan in 1978 with whole Zostera marina plants, using sods, cores,

or bare-root plants (Ailstock & Shafer, 2006). In the 1980’s whole

plant cuttings, seeds, and tubers of Vallisneria americana and several

other low-salinity species were planted in the upper Chesapeake

Bay, and in 1985 whole plants of R. maritima were transplanted in

the mid-bay Choptank River (Ailstock & Shafer, 2006). In the past,

it was most common to restore underwater grasses by harvesting

the plants from suitable donor beds and transplanting them into

the bay as individual shoots, shoot bundles, or sods (Ailstock &

Shafer, 2006). This caused SAV restoration to be limited to small

projects, typically on a scale of tens or hundreds of square me-

ters due to the high costs and logistical constraints of this method

(Ailstock & Shafer, 2006). In addition, approximately 40,500 addi-

tional hectares of SAV were needed to reach the restoration goals

established by the Chesapeake Bay Program in 2003, therefore a

22  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

new restoration method had to be identified in order to establish

plants at such a scale (Chesapeake Executive Council, 2003).

In 2003, the U.S. Army Corps of Engineers (USACE)

Engineer Research and Development Center (ERDC) and the

National Oceanic and Atmospheric Administration (NOAA)

Chesapeake Bay Office began to plan and implement their respec-

tive research programs to promote the development of innovative

tools and techniques for the large-scale restoration of SAV (Marion

& Orth, 2010). This program represented the first coordinated in-

teragency effort to develop, evaluate, and refine protocols suitable

for large-scale SAV restoration (Shafer & Bergstrom, 2010). Since

this research initiative began, an average of 13.4 ha/year of SAV

has been planted in the Chesapeake Bay, compared to an aver-

age rate of 3.6 ha/year during the previous 21 years (1983–2003)

(Shafer & Bergstrom, 2010). The new techniques and technologies

allow submerged aquatic plants to be planted at scales that would

have been unattainable with existing technologies only a few years

ago (Busch, 2010). Furthermore, the costs of conducting these

plantings declined with increased understanding of the limiting

factors and new advances in technology development (Ganassin

& Gibbs, 2008).

The most effective approach involves directly sowing seeds

into suitable planting areas, a method that emerged as a viable

means of planting and restoring large areas of the seagrass, Zostera
marina (Ailstock & Shafer, 2006). Once an existing healthy, viable

underwater seagrass bed is identified, fruiting plants are collect-

ed into baskets and then later processed through a turbulator to

essentially “shake” the seeds off of them. After turbulating, the

plants are processed and refined through a series of mesh screens

until just the pure seed is left. After storing the pure seed in various

containers under brackish conditions in a cold room over the win-

ter months, the seeds are mixed with sand and redistributed into

areas where SAV beds used to be prominent in Chesapeake Bay

The Restoration of Submerged Aquatic Vegetation in the Chesapeake Bay  23

regions throughout the spring.

The four types of native SAV that are of interest in the lo-

cal region due to their frequency, abundance and diversity of

tolerances and habitat value are Ruppia maritima (widgeon grass),

Zannichellia palustris (horned pondweed), Stuckenia pectinata (sago

pondweed), and Potamogeton perfoliatus (redhead grass). R. maritima
tolerates a wide range of salinity, from the slightly brackish upper

and mid-Bay tributaries through near-seawater salinity in the lower

Bay (Maryland DNR, n.d.). R. maritima is notorious for disappear-

ing in large quantities when water quality declines but tends to

quickly reappear a few years later if conditions are healthy again

(Maryland DNR, n.d.). R. maritima is most common in areas with

sandy substrates, although it occasionally grows on soft, muddy

sediments (Maryland DNR, n.d.). Z. palustris is found in every state

in the continental United States, as well as in Europe and South

America (Maryland DNR, n.d.). Z. palustris is widely distributed in

Chesapeake Bay, growing in fresh to moderately brackish waters,

in muddy and sandy sediments (Maryland DNR, n.d.). Z. palustris
seems to grow most abundantly in very shallow water but may

grow to depths of 5m if it receives enough light (Maryland DNR,

n.d.). S. pectinata is widespread in the Chesapeake Bay, growing in

fresh non-tidal to moderately brackish waters as well as in some

lakes (Maryland DNR, n.d.). It can tolerate high alkalinity and

grows on silty-muddy sediments (Maryland DNR, n.d.). Lastly, P.
perfoliatus is typically found in fresh to moderately brackish and

alkaline waters (Maryland DNR, n.d.). P. perfoliatus grows best on

firm, muddy soils and in quiet water with slow-moving currents

(Maryland DNR, n.d.).

Methods

The first step of SAV restoration was to identify large-scale veg-

etated beds in the Chesapeake Bay that were healthy enough to

be harvested. Potentially viable beds were identified using satellite

24  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

imagery from the Virginia Institute of Marine Science (VIMS),

and locations of nearby boat launches were recorded (Fig. 2). It

was important to identify SAV beds that had high bed density

because this ensures the greatest chance of finding an adequate-

ly-sized and healthy donor site.

Once a suitable donor bed was identified and an accessible

nearby boat launch was found, kayaks were used to gain access to

the sites to monitor the growth stage of plants in those beds (Fig.

3). Beds were deemed appropriate for collection when the majori-

ty of plants were in fruit (which contain the seeds).

When the plants were ready to collect, volunteers from Anne

Arundel Community College (AACC), Maryland Department of

Natural Resources, and Shore Rivers visited the identified loca-

tions by motorboat and hand collected the plants by removing the

Figure 2

2020 Satellite Image depicting
high bed density (the dark green
area) found in Marshy Creek,
MD (Virginia Institute of
Marine Science). Light green
shows lower-density beds.

The Restoration of Submerged Aquatic Vegetation in the Chesapeake Bay  25

upper third of viable stems and placing them into 17” round by

14-1/2” high plastic crab baskets (Fig. 4). After collecting about 20

crab baskets worth of plants, they were stored indoors in an unlit

space in the AACC shed for seven days in large bins to achieve

after-ripening. The plants were kept moist throughout the seven

days and were occasionally churned with a metal rake in order to

prevent rotting. All four species were processed twice: seven days

after they were harvested, and then again after 14 days.

A turbulator was used to separate the seeds from the stems

(Fig. 5). There are three turbulators in the state of Maryland and

AACC has two of them. The turbulator is a large six-foot by six-

foot round tank that has a series of PVC pipes with vacuums

attached to run CO2 through the water and create a “jet-like” ef-

fect. These jets help to churn the plants and shake the seeds off the

plants. Plants were turbulated in water for 15 minutes and then the

tank was drained into a mesh bag to collect the separated seeds.

Typically, 14 days after collection, seeds were processed a second

Figure 4

Choptank Riverkeeper, Matt
Pluta, harvesting bushels of
Stuckenia pectinata (Sago
Pondweed) from Broad Creek.

Figure 5

Volunteers from Anne Arundel Community College, Shore Rivers and
Submerged Aquatic Vegetation Watchers use the turbulator to separate
seed from stems of Potomogeton perfoliatus (Redhead grass).

Figure 3

Ripe fruits of Ruppia maritima.

26  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

time to collect any seeds remaining on the

plants after the first process.

Following the seed processing stage,

seeds were refined outdoors to get them into

a storage-ready state. The seeds needed to

be as clean as possible with little detritus at-

tached, as they were stored in multiple clear

gallon-sized plastic jars in a walk-in refrig-

erator at AACC and Shore Rivers Offices.

When seeds have too much extra material

on them, they often begin to decompose and

can easily become contaminated, and then

cannot be dispersed back into the bay for

restoration. Storage conditions must provide

an environment that allows seeds to remain

viable and dormant, since embryo death or

premature germination will negate their use

for restoration. Aeration during storage was

also important for retaining the viability of

stored seeds. Research has shown that seeds

stored at 4°C with aeration have the highest

germination rates (Ailstock & Shafer, 2006).

To refine the seeds, the mesh bag full

of seed and detritus collected from the tur-

bulator was emptied gradually onto a series

of wire screens with decreasing mesh sizes

(Fig. 6). A hose was used to spray water and

push the plant material through the screens

to separate the detritus from the pure seed

(Fig. 7). After refining, seeds were stored in

a brackish condition with aeration in a cold

room at AACC with the intention to mimic

the estuarine environment. Fish tank aeration
Figure 7

Processing seed through the series of mesh screens to refine it.

Figure 6

Spherical seeds of Stuckenia pectinata (Sago pondweed)
with detritus attached, ready to be processed.

The Restoration of Submerged Aquatic Vegetation in the Chesapeake Bay  27

pump devices were placed in each jar of seed

in order to prevent bacteria and algae from

growing in the jars during the storage peri-

od. The storage containers were gallon-sized

clear plastic jars with a screw-on cap with a

hole in it, in order to allow for the aeration

pump to be placed inside. All seeds will re-

main in the dark cold room over the winter

months and will be redistributed throughout

the Bay in the Spring for restoration (Fig. 8).

Discussion/Recommendations

In 2021, AACC, in partnership with Maryland

Department of Natural Resources and Shore

Rivers, collected all four native plants with a

goal of restoring one acre of underwater seagrass with the seeds

collected. Approximately 20 baskets of each of the following spe-

cies were collected: R. maritima was collected from Broad Creek in

Talbot County, S. pectinata was collected from Rock Hall in Kent

County, Z. palustris was collected from Tilghman Creek and the

Wye River in Talbot County, and P. perfoliatus was collected from

Marshy Creek in Queen Anne’s County.

This project could be improved by increasing monitoring of

both previously restored beds and harvested beds. Post-restoration

monitoring can be a strain on organizational resources, and there-

fore most volunteer restoration projects do not include follow-up

monitoring to determine their long-term effectiveness (Chesapeake

Bay Program Submerged Aquatic Vegetation Workgroup, 2020).

In addition, no long-term data has been collected analyzing the

health of the harvested beds, some of which have been harvested

over several successive years. Monitoring of affected beds (both

harvested and restored) is necessary to determine the success rate

of restoration efforts and to ensure that healthy beds are not being

Figure 8

AACC Faculty (Tammy
Domanski, left) and student
volunteers distribute seeds on
the Magothy River.

28  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

jeopardized in the restoration process. In conjunction with this ef-

fort, it would be helpful to monitor water quality in the areas of

restored and harvested beds. Each of the four species of interest

in this region have slightly different tolerance limits and growing

conditions, therefore water quality data from harvested and re-

stored sites would provide additional information to help explain

restoration success rates.

Another area of further study could include analyzing the

restoration success rate per species of interest. Low transplant sur-

vival and seedling establishment rates at the large-scale planting

sites within Chesapeake Bay suggest that current site selection cri-

teria are either not stringent enough or are incomplete, due to

a lack of understanding of factors influencing both seed germi-

nation and seedling establishment (Shafer & Bergstrom, 2010).

Ideally, a series of germination tests would be performed on each

seed type collected in order to determine seed viability per species.

In addition to lab-based germination tests using terrestrial sub-

strate, an aquatic germination test should be conducted as well.

The underwater planting environment differs substantially from

terrestrial systems in that conditions such as light and nutrient

availability and sediment stability are much less predictable (Koch,

2001). This would provide more information about the specific

conditions that support high germination rates for each species.

Proper seed storage conditions also deserve further research,

as there is a lack of data in regards to storing seeds with detri-

tus attached. There are currently three methods used to store and

disperse seeds for restoration projects involving all species (Ailstock

& Shafer, 2006). Two require either no storage or temporary stor-

age under the ambient conditions to which wild populations are

generally exposed (Ailstock & Shafer, 2006). The third method

focuses on long-term storage, which enables seed availability when-

ever they are needed (Ailstock & Shafer, 2006). With the possible

exception of such plants as Zostera marina and Thalasia testudinum,

The Restoration of Submerged Aquatic Vegetation in the Chesapeake Bay  29

information on the variation in storage and germination require-

ments of the seeds of most underwater grasses is sparse (Ailstock

& Shafer, 2006).

These questions remain unanswered because they require

an immense amount of resources and volunteer time. In order to

collect the necessary data, a large volunteer base is needed to con-

sistently monitor and analyze beds as well as perform lab tests over

multiple years. Collaborations between local nonprofits (eg. Shore

Rivers), state agencies (eg. Maryland DNR), and academic institu-

tions (eg. AACC Environmental Center faculty, staff and students)

provide a great opportunity to seek the answers to these questions.

Acknowledgements

Jose Barrata, Coordinator of STEM Initiatives, provided the

funding opportunity that enabled Hannah Claggett’s participa-

tion in this project, through a Louis Stokes Alliances for Minority

Participation (LSAMP) grant. Michael Norman, Lab Manager of

the Biology Department, spearheaded AACC’s involvement in the

project via a grant from MDDNR and served as supervisor on the

project. Eastern shore Riverkeepers, including Ellie Bassett, Zack

Kelleher, Annie Richards and Matt Pluta, and DNR staff member

Mark Lewandowski helped to organize, recruit volunteers for and

participate in the seed harvesting and refining.

References

Ailstock, Steve and Deborah Shafer. 2006. “Protocol for large-scale collection, process-

ing, and storage of seeds of two mesohaline submerged aquatic plant species.”

SAV Technical Notes Collection: ERDC/TN SAV-06-3. https://apps.dtic.mil/sti/pdfs/

ADA454247.pdf

Bergstrom, Peter. 1998. “SAV Hunter’s Guide for Chesapeake Bay.” The Volunteer Monitor

10(2): 17

Blankenship, Karl. 2021. “Chesapeake Bay grass beds declined for the second year

in a row.” Bay Journal, July 29, 2021. https://www.bayjournal.com/news/

fisheries/chesapeake-bay-grass-beds-decline-for-second-year-in-a-row/article_e6f-

097fa-e568-11eb-a573-9766d206b1a9.html

30  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

Busch, Katheryn, Rebecca Golden, Thomas Parham, and Lee Karrh. 2010. “Large‐Scale

Zostera marina (eelgrass) Restoration in Chesapeake Bay, Maryland, USA. Part I: A

Comparison of Techniques and Associated Costs” Restoration 18, no 4: 490-500

DOI:10.1111/j.1526-100X.2010.00690.x

Chesapeake Bay Program. 2020. “Underwater grasses.” Learn the Issues. https://www.

chesapeakebay.net/issues/bay_grasses.

Chesapeake Bay Program. Submerged Aquatic Vegetation Workgroup. 2020. “Submerged

aquatic vegetation (SAV).” Chesapeake Progress. https://www.chesapeakeprogress.

com/abundant-life/sav

Chesapeake Executive Council. 2003. “Strategy to accelerate the protection and resto-

ration of submerged aquatic vegetation in the Chesapeake Bay. United States

Environmental Protection Agency Chesapeake Bay Program, Annapolis, MD. 18

pp. http://www.chesapeakebay.net/content/publication/cbp_12608.pdf.

Ganassian, C and P.J. Gibbs. 2008. “A review of seagrass planting as a means of hab-

itat compensation following loss of seagrass meadow” Fisheries and Research

Development Corporation (Australia) & New South Wales. Department of Primary

Industries, Fisheries Final Report Series, No. 96. ISSN 1449-9967

Koch, Eva Maria, Steve Ailstock, Deborah Shafer, Dale Booth, and Dale Magoun. 2010.

“The Roles of Current and Waves in the Dispersal of Submersed Angiosperm

Seeds and Seedlings” 2003–2008.” Restoration Ecology 18, no 4: 584-595

DOI:10.1111/j.1526-100X.2010.00698.x

Marion, Scott and Robert Orth. 2010. “Innovative Techniques for Large‐scale Seagrass

Restoration Using Zostera marina (eelgrass) Seeds” Restoration 18, no 4: 514-526

DOI:10.1111/j.1526-100X.2010.00692.x

Maryland Department of Natural Resources. n.d. “Submerged aquatic vegetation (SAV)

identification key.” Learning Resources. https://dnr.maryland.gov/waters/bay/

Pages/sav/key.aspx?savname=Redhead+Grass.

Shafer, Deborah and Peter Bergstrom. 2010. “An Introduction to a Special Issue

on Large-Scale Submerged Aquatic Vegetation Restoration Research in the

Chesapeake Bay: 2003–2008.” Restoration Ecology 18, no. 4: 481-489. https://doi.

org/10.1111/j.1526-100X.2010.00689.x

U.S. Fish and Wildlife Service, Chesapeake Bay Estuary Program, 1992. Field Guide to the

Submerged Aquatic Vegetation of the Chesapeake Bay, by Linda M. Hurley.

Virginia Institute of Marine Science. 2020. “SAV Program: Monitoring and Restoration.”

Research & Services. https://www.vims.edu/research/units/programs/sav/

Virginia Institute of Marine Science. n.d. “Interactive SAV map.” Research & Services.

https://www.vims.edu/research/units/programs/sav/access/maps/index.

php?showLayers=SAV_Base_Layers_2504.

Optimizing Quantitative PCR to Distinguish Between Human and Canine Bacterial Samples  31

Mollie Crossman and Jeremy Snyder

Optimizing
Quantitative PCR to
Distinguish Between
Human and Canine
Bacterial Samples
Abstract

High bacterial levels in recreational bodies of water can be a

risk to human health, and significant effort and funding are in-

vested in monitoring fecal indicator bacteria (FIB) levels. Despite

the health risk, methods commonly utilized to determine bac-

terial concentrations provide no information about the source

of contamination. This study assesses the feasibility of utilizing

quantitative polymerase chain reactions (qPCR) to perform mi-

crobial source tracking (MST) that will identify the source of fecal

contamination in rivers and streams in Anne Arundel County.

Human and canine fecal bacterial DNA samples were analyzed

using primer sets previously reported to target genes frequently

identified in host-specific bacterial species. Primers specific for esp,

encoding the enterococcal surface protein often associated with

human fecal bacteria in clinical settings, and primers specific for

the Bacteroides 16s rRNA genes, either specific to bacterial genomes

from canine or human sources, were utilized. Quantitative poly-

merase chain reaction (qPCR) analysis demonstrated that, while

the primer sets successfully amplified target sequences, there was

some amplification of non-target sequences within the target

host, and some amplification of genes in samples from non-target

hosts, such as amplification of sequences in dog bacterial DNA by

human bacterial-specific primers. Gel electrophoresis and DNA

Key words

fecal indicator bacteria

Bacteroides

16s rRNA

quantitative PCR

microbial source tracking

FAculty Mentor

Tammy Domanski, Ph.D.
Professor, Biology Department
Director, Environmental Center at
Anne Arundel Community College

32  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

sequencing of sample qPCR products were conducted and con-

firmed that target genes were amplified, although the identity of

some of the off-target products remains to be determined. Primers

reported to target sequences in bacteria from dog feces showed

higher specificity, but still resulted in some off-target amplification.

On-going work includes optimizing assay conditions and primer

sequences to increase specificity and reducing potential sources

of reaction contamination which may be contributing to some

off-target results.

Introduction

Fecal contamination in environmental waters intensifies the human

health risk of infection from waterborne pathogens. These patho-

gens originate not only from human fecal sources, but also from

the feces of other mammals and some birds. Human-compatible

pathogens are particularly prevalent in the feces of domestic pets,

with one study estimating 39.1% of human pathogens being able

to infect domestic animals (Green, White et al. 2014). Feces of

domestic animals are also likely found in higher proportions than

feces of wildlife in environmental waters, as the disposal of feces

from pets and domestic animals are typically left to the owner dis-

cretion. This increased likelihood of cross infection and higher

proportion of human-compatible infection sources accentuates

the need to detect not only the presence of waterborne pathogens

from fecal contamination, but also the source of feces.

Due to the wide variety of waterborne pathogens, partic-

ularly in environmental waters with fecal contamination, it is

unreasonable and unrealistic to attempt monitoring all waterborne

pathogens. As such, environmental water samples have historically

been tested for one or more species of bacteria that are unlikely

to be found in water absent of fecal contamination. For example,

the Environmental Protection Agency (EPA) recommends testing

recreational swimming waters for fecal coliforms, Escherichia coli (E.

Optimizing Quantitative PCR to Distinguish Between Human and Canine Bacterial Samples  33

coli) or Enterococcus sp., with enterococcal testing more preferable in

marine and brackish waters (US EPA, 2012). While enumeration

of bacteria can be informative and guide decisions about the safe-

ty of contact with recreational waters, microbiological assays do

not provide information about the specific source of the bacteria.

Methods have been developed, with varying success, to

determine the bacterial source of contamination using library-de-

pendent methods such as antibiotic resistances, bacteriophage

sensitivity, pulsed-field gel electrophoresis and biophysical char-

acteristics (Simpson et al. 2002; USEPA, 2005); however, many

of those methods are labor-intensive, requiring twenty-four hours

for bacterial culturing and collection of many samples from spe-

cies known to most likely cause contamination in a given area

(Harwood et al. 2013). Library-independent methods rely on the

identification of sequences within a given species that have iden-

tifiable nucleotide variation dependent on the source organism.

This process is referred to as molecular microbial source tracking

(MST) and predominantly utilizes qPCR technology employing

tagged primers and probes that are measured at each cycle in an

amplification reaction. This makes it possible to compare the con-

centration of template DNA between samples and more precisely

differentiate relative levels of contamination from specific sources.

Some studies have suggested that Bacteroides, while not recom-

mended as an indicator for contamination with microbiological

methods due to the inability to culture the anaerobes, may be the

best organism for molecular MST due to identified host-specific

sequences (Layton et al. 2006).

While a number of studies have proposed species-specific

primer sets, the method is far from standardized (Harwood et al.

2013). There are multiple organisms and gene targets proposed,

some studies have not been field tested, and those that have been

field tested have suggested that sequence specificity may also be

region-specific (Harwood et al. 2013). In addition, the EPA has

34  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

released two methods for quantifying fecal contamination in wa-

ter. One quantifies total Enterococcus concentration (US EPA, 2015)

and the second quantifies human-specific fecal contamination

(USEPA, 2019). Both procedures require costly, assay-specific re-

agents. This project assesses the feasibility of qPCR for molecular

MST to not only determine if the source is human, but to identify

other sources, specifically starting with pet waste, predicted to be

responsible for up to 46% of fecal contamination in the waters

around Anne Arundel County (TMDL Plan, 2017). Significant

progress was made toward that goal, and further studies will ex-

pand use of additional primer sets and probe types.

Materials and Methods

DNA template samples
Canine fecal samples were obtained from local veterinarians and

dog owners. Individual human samples were obtained from anon-

ymous volunteers. Bacterial DNA from canine feces (BDCanine)

(21D1 through 21D7; n=7) and bacterial DNA from human fe-

ces (BDHuman) (21p001 through 21p004, p003, p004; n=6)

were isolated using a Zymo Quick Fecal/Soil Microbe kit from

approximately 0.1 g of fecal matter. DNA concentrations were

determined by absorbance at 260 nm and DNA quality was deter-

mined by 260/280 ratio.

Quantitative PCR
Assays were conducted utilizing SYBR green chemistry, specifi-

cally utilizing the qPCRBio SyGreen Blue Mix (PCR Biosystems).

Unless otherwise stated, 20 μl reactions included 1X SyGreen

Blue Mix (3 mM MgCl2 final concentration), 400 nM forward

and reverse primers, and 10-73 ng DNA. Primer sets with previ-

ously reported specificity for host organisms were utilized (Table

1). Primers were obtained from Integrated DNA Technologies

(Coralville, USA).

Optimizing Quantitative PCR to Distinguish Between Human and Canine Bacterial Samples  35

Conditions for qPCR
The samples were analyzed in a mic PCR instrument (Biomolecular

Systems, Sydney, Australia) unless otherwise stated. The condi-

tions for the qPCR were as follows: hold Steps- hold at 95℃ for

3 min; cycling- 1) 95℃ for 10 sec 2) 60℃ for 30 sec acquiring on

green; melt on green- hold at 95℃ for 15sec, hold at 60℃ for

60sec, melt from 65℃ at 0.15 C/sec. Threshold values were auto-

matically assigned by the instrument for each assay. The Cq value

is defined as the cycle at which a reaction’s fluorescence reaches

the threshold, and the lower the Cq value, the higher the number

of DNA targets in the template sample.

Agarose gel electrophoresis
qPCR products were analyzed on 1.5% agarose and stained with

ethidium bromide. Fragment size was estimated by comparison to

two standards (100 bp and 1kb, EZvision, Amresco).

Gene sequencing and analysis
Select qPCR products were sequenced by Genewiz (genewiz.

com) on both strands using the primers listed in Table 1. The raw

Table 1

Molecular microbial source-tracking (MST) primers utilized in this study.

36  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

sequences from both strands were manipulated in DNA Subway

(dnasubway.cyverse.org) to trim low quality ends, align the com-

plementary strands from each sample, and trim each result to a

consensus sequence. To assess specificity of each primer set NCBI

Nucleotide BLAST (blastn) analysis was performed.

Results

Host Specificity of primers
Initial qPCR assays were conducted utilizing primers previously

reported to have specificity for BDCanine (DG3F and DG3R) and

BDHuman (HF183F, HFDrev and HFBacR) using qPCR condi-

tions recommended for the SyGreen Blue reagents.

Human-specific primers
Two reverse primers were used in the analysis of BDHuman

in order to compare the validity of the results based on the qPCR

practices available. The HF183F forward primer has been histori-

cally used with the HFDRev reverse primer to specifically amplify

the 16s rRNA gene in the genus Bacteroides (human 1). A research pa-

per reported that the HFBacR reverse primer improved specificity

(human 2) (Green et al., 2014) so reactions were run separately

with the human 1 and human 2 primer sets for comparison. While

the average Cq value for reactions using BDHuman were almost

identical when comparing human 1 and human 2 primers (Cq av-

erage = 23.0), the human 2 primer set resulted in more variation

as determined with standard deviation (SD) calculations (SD= 3.7

and 9.0, respectively) (Figure 1). Consequently, the human 2 prim-

ers were not included in later assays.

When comparing the average Cq values in assays performed

with the other primer sets, the esp and dog primer sets produced

consistently higher Cq values than the human 1 primers (Figure

2). The average Cq value for all reactions with dog primers and

BDHuman was 26.5 and the average with esp primers was Cq of

Optimizing Quantitative PCR to Distinguish Between Human and Canine Bacterial Samples  37

28.9. The SD with esp primers was 2.6, overlapping the average

from the dog primers (SD= 3.8). Higher Cq values in assays with

BDHuman and dog primers is encouraging. The dog primers’

high Cq values indicate they are specific for something not found

in the BDHuman. The esp primers resulted in Cq values similar to

those with dog primers and BDHuman.

The largest SD from the triplicate samples using the dog

primers was 0.5, which does not place the Cq values within the

range of any of the data collected using the human 1 primers. The

average Cq values of the dog and esp primers were similar, and

were closest with the 21p002 sample (Figure 2). The dog primers

exhibited much lower SD values, such as 0.2 for the 21p002 sam-

ple, which did not fall in the range of the esp results.

Overall, in assays with BDHuman, the human 1 primers re-

sulted in a Cq average significantly lower than the Cq average with

dog primers (p=0.0011 in two-tailed t-test) and significantly lower

than the Cq average with esp primers (p=2.1 x 10-8). Of note, the

dog primer Cq average was significantly lower than the esp primer

Cq average (p=0.022).

Human 1		 Human 2

A
v

er
a

g
e

C
q

Sample

Figure 1

Average Cq value of each BDHuman with the human 1 primers versus the
human 2 primers. Each sample was run in triplicate (n=3). No amplifica-
tion was detected in the reaction with 21p001 and human 2 primers.

38  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

Dog-specific primers
Assays performed using the dog primers with BDCanine samples

resulted in Cq values consistently lower than assays containing hu-

man-specific primers with the same samples, indicating a greater

specificity for BDCanine (Figure 3). Across assays using BDCanine

with dog primers, the Cq average was about 18 (SD=2.5). Cq val-

ues for each BDCanine were also consistent across assays, with

the SD per sample reaching a maximum of only about 2 cycles.

Assays using human 1 primers with BDCanine and dog primers

with BDHuman produced high average Cq values, 27 cycles and

31, respectively, confirming that each primer set did not efficiently

amplify bacterial DNA from non-target species. In a two-tailed

t-test the Cq average in assays with the dog primer set was signifi-

cantly lower with BDCanine (Cq average=17.8) when compared

with BDHuman (Cq average=30.8) (p=1.14 x 10-36).

Specificity of primers for target genes
Analysis of qPCR products. To examine the specificity of the prim-

ers in targeting specific genes, two 1.5% agarose electrophoresis

Sample

A
v

er
a

g
e

C
q

Human 1 (n=6)	 esp (n=3)	 Dog (n=3)

Figure 2

Average Cq values for each primer set. The human 1 and esp primers were
specific for BDHuman and the dog primers were specific for BDcanine.

Optimizing Quantitative PCR to Distinguish Between Human and Canine Bacterial Samples  39

gels were run using the qPCR products from promising assay sam-

ples (Figure 4). Gel A contained qPCR products from assays with

BDCanine template and gel B contained products from assays us-

ing BDHuman template. The single bands in lanes two and three

of Figure 4a, containing the 21D6 product and its first dilution

from a dilution series assay, indicate a highly specific reaction,

while the additional less prominent bands in lanes four and five,

containing the 21D2 and 21D4 products from the 15-Oct assay,

indicate a much less specific reaction. This difference in specificity

for gel A is to be expected, as the dilution series assay used ca-

nine-specific primers (dog) with BDCanine and the 15-Oct assay

used human-specific primers (human 1) with BDCanine.

Similarly, in Figure 4b, lanes two and three contain 21p003

and P003 products from the 11-Nov assay using the esp primers.

Both reactions resulted in two bands. The esp primers target the
esp gene, previously reported to be present only in Enterococcus from

human sources in clinical settings (Ahmed et al. 2008). The pres-

ence of multiple bands on the agarose gel suggests that the esp

Figure 3

Average Cq values of each sample of BDCanine with human 1 primers
versus dog primers. The human 1 data represents the results of one assay
(n=3), while the dog data represent the results of three assays (n=9).

Sample

A
v

er
a

g
e

C
q

Human 1 (n=3)		 Dog (n=9)

40  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

primers are not necessarily specific to one target. Lanes four and

five contain 21p002 and P004 products from the 29-Oct assay

with human 1 primers. The results of the gel show that in lane

four there is a band of the expected size (167 base pairs). Lane

five contains multiple products, suggesting that the primers were

not specific to one target. Lanes six and seven contain products

from reactions containing 21p003 and 21p002 templates from the

1 2

a

b

3 4 5 6 7
21p003 21p002 21p00221p003P003 P004

21D6 21D6-1 21D2 21D4

Figure 4

1.5% agarose gel electrophoresis. In both gels, lane 1 contains a 100-bp ladder,
and the remaining lanes contain qPCR product samples. Gels were stained with
ethidium bromide. 4a) qPCR products from reactions containing BDCanine
as indicated and dog primer set: lane 2 = 21D6, lane 3 = 21D6-1, lane
4 = 21D2, lane 5 = 21D4. 4b) qPCR products from reactions containing
BDHuman as indicated and either esp primers (lanes 2 and 3), human 1
primer set (lanes 4 and 5), or human 2 (lanes 6 and 7): lane 2 = 21p003,
lane 3 = P003, lane 4 = 21p002, lane 5 = P004, lane 6 = 21p003,
lane 7 = 21p002. The arrow next to 4b indicates the 126 bp band.

Optimizing Quantitative PCR to Distinguish Between Human and Canine Bacterial Samples  41

8-Oct assay with human 2 primers. The expected band size for

DNA with these primers is 126 base pairs and was present in both

lanes. Lane six also contained a larger band likely due to non-spe-

cific binding at non-target sequences.

Sequencing of amplification products from each primer

set with each type of template was conducted (BDHuman and

BDCanine) to confirm successful amplification of the target se-

quence. The qPCR products that displayed greater specificity

in the agarose electrophoresis gel runs were sent for sequencing.

Reactions containing multiple products were expected to produce

poor quality sequence, confirmed by the poor quality of sequence

obtained from the P003 with esp primers sample. Specifically, lanes

two, three, and five from the gel in Figure 4a, containing reaction

products from samples 21D6 and 21D6-1 with dog primers and

sample 21D4 with the human 1 primers, and lanes four and seven

from the gel in figure 4b, containing reaction products from sample

21p002 with the human 1 primers and with the human 2 primers.

Lane three of the gel in figure 4b, containing sample P003 with

the esp primers, was also sent for sequencing even though there

were extra bands present.

The DNA sequences were manipulated and analyzed with

Cyverse’s DNA Subway. Poor quality reads near the ends were

trimmed and the forward and reverse strands from each sample

were paired to find a consensus of high confidence. Each con-

sensus sequence underwent a BLAST search (blast.ncbi.nlm.nih.

gov/) to determine the identity of the gene amplified in qPCR

reactions. Sequence manipulation and an example outcome are

illustrated in figure 5.

The product from the reactions with 21D6 templates, un-

diluted and -1 dilution, and canine specific DG3 were nearly

identical, with the only difference being an additional three bases

on the undiluted sequence. As such, the BLAST searches produced

nearly identical results, matching Bacteroides sequences, coinciding

42  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

with the reported specificity of the DG3 primer set (Green, White,

et al., 2014). The other sequenced canine product 21D4 from a

reaction with the human 1 primer set resulted in the closest match

Figure 5

Sequence manipulation and analysis. The amplification product from human
fecal bacterial DNA amplified with the human 1 primer set was loaded into
the DNA Subway-Cyverse data workspace for trimming and consensus iden-
tification. 5a) Forward (21p002-HF183) and reverse (21p002-HFDrev)
were paired and initial system-generated trimming performed. 5b) After the
Cyverse system generated the reverse complement of HFDrev, the two sequenc-
es were aligned and the consensus, sequence of complete identity chosen. 5c)
The best match alignment generated by the NCBI nucleotide BLAST system
(blast.ncbi.nlm.nih.gov/Blast.cgi).

a

b

c

Optimizing Quantitative PCR to Distinguish Between Human and Canine Bacterial Samples  43

to uncultured microorganisms containing the 16S ribosomal RNA

gene. However, exact sequence matches were also found for a

number of Faecalibacterium prausnitzii strains, which also contain the

16S rRNA gene. The human 1 primer set is intended to target the

16S rRNA gene (Haugland et al. 2010]), so these results are not

surprising.

The 21p002 sequence resulted in a 73 base pair, high qual-

ity consensus that was used in a BLAST search and matched the

Bacteroides 16s rRNA gene, as expected. The 21p003 product (hu-

man 2 primers) was of poor quality, but a 25 base pair sequence

was put through a BLAST search and was a match to the 16s

rRNA gene in Bacteroides. The results of this search showed match-

es to the same gene in multiple species, specifically Bacteroides dorei
and Bacteroides vulgatus, whereas the human 2 primer set resulted in

matches only to Bacteroides dorei.
The sample of p003 product with the esp primers was sent

for sequencing even though it had two bands present in the aga-

rose gel. The sequences were of low quality with high background

which suggested that there may be multiple DNA species present,

and was expected based on the agarose gel results. A portion of

the consensus was used in a BLAST search and matched the esp

gene in Enterococcus faecium and Enterococcus faecalis, which are both

known to inhabit the human gastrointestinal tract.

Determination of standard curve for dog-specific primers
A standard curve was created using the dog primers and a dilution

series of BDCanine sample 21D6. This sample had the lowest av-

erage Cq value, at about 15 cycles with a low SD across replicates

and assay dates and was thus chosen for the dilution series (Figure

6). Undiluted and six ten-fold dilutions of the sample were used in

the assay. Dilutions greater than 104 did not result in amplification.

The average Cq values for the other samples, undiluted through

104 were approximately 14, 18, 22, 27, and 29 cycles, respectively.

44  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

Examining the average Cq values as a function of the sample di-

lution displays a linear relationship, Cq=3.85x+14.4 (r2 =0.996),

consistent with an expected slope of a bit greater than 3.3 which

reflects the exponential nature of the amplification process.

Discussion

Based on the assays conducted and analyses performed, the dog

primer set shows promise in differentiating between BDCanine

and BDHuman samples. The dog primer set produced significant

differences in Cq value for known positive and known negative

samples, indicating that it was selectively amplifying BDCanine

target sequences. The dog primer set also produced consistent

Cq results, with a maximum SD of 1.9 cycles for canine samples

across assays and SDs of less than 0.6 cycles for all assays using

the dog primer set. These together indicate that the dog primer

set is a good candidate for further testing and eventual use in the

monitoring of environmental waters. Further testing will involve

the use of specific positive controls, such as synthetic plasmids

of targeted DNA sequences rather than BDCanine, and the use

of alternate probes, such as the Taqman probes used in previous

Figure 6

Average Cq values (n=3) for each dilution of sample 21D6 with dog primers.

21D6 Dilutions

A
v

er
a

g
e

C
q

Optimizing Quantitative PCR to Distinguish Between Human and Canine Bacterial Samples  45

studies (Green, White, et al., 2014), in order to further improve the

specificity of the primer set.

Results from assays with BDHuman and human-specific

primers suggest that this procedure for identifying BDHuman

samples is promising. The average Cq values of all results from

each primer showed that the two human specific primer sets, hu-

man 1 (n=36) and human 2 (n=18), resulted in near-identical

Cq values of 23.0 cycles. Both primer sets amplified the bacte-

rial DNA with reasonable values across multiple different assays

with different DNA samples. The specificity of the two primer

sets were compared by looking at the average SDs for the same

total number of assays (n=18). The human 1 primers were more

precise, with a SD of 0.9 compared with the human 2 primers,

SD of 9.5. In light of the results in this study, which did not agree

with a previous report (Green, Haugland et al. 2014), the human

1 primer set was utilized in most assays. In addition, the Green

study discussed the increased likelihood of very small primer-di-

mer formation when using the human 1 primer set. Our study did

not show significant primer-dimer formation, which would result

in bands smaller than the smallest band in the 100 bp standard

(Figure 4). The study by Green et al. utilized samples from a wider

range of species, including chickens, cattle, cats and deer, a slight-

ly larger human sample population (n=6), and a large number of

samples from wastewater facilities from across the United States

(n=54) (Green, Haugland et al. 2014), which likely reflected more

overall sequence variation. Future studies in our laboratory will in-

clude a wider range of species and wastewater samples, although

our focus will be on methods with the highest specificity for strains

in Anne Arundel County.

While this study shows great promise for use of qPCR for

molecular MST, there are several areas that will benefit from

method and technique optimization. In multiple experiments

containing primers specific for one species and template from

46  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

the other species amplification products were detected, although

those reactions were intended as negative controls and predicted

not to amplify any product. Sequencing revealed that the expect-

ed target gene was amplified (figures 2 and 3 and BLAST results).

These results suggest that either amplification conditions need to

be altered to increase specificity of the primers, or that the primer

sequences need to be optimized to decrease non-specific anneal-

ing. Although in all cases such reactions resulted in significantly

higher Cq values than reactions containing the matched primers

and template, confidently distinguishing between contamination

sources will require optimization to more clearly differentiate be-

tween source species. The goals in this type of assay are low Cq

values for assays containing target species’ DNA templates, and

the absence of amplification, so no Cq value in assays containing

non-target species’ DNA.

In rare cases, water only controls, containing no template

DNA, resulted in amplification. These positive results were

typically only found in one of the sample triplicates and not re-

flected in the other two triplicates of the sample primer and

sample combination, indicating the probability of intermittent

cross-contamination over non-specificity of the primer set. As

cross-contamination can easily invalidate the results of an assay,

the techniques used in future assays must be improved to remove

all potential for cross-contamination. Additional improvements in-

clude a more objective and explicit definition of what constitutes

a positive result, rather than a relative comparison between assay

samples, and the use of more specific positive controls such as syn-

thetic plasmids of targeted DNA sequences, to ensure that primers

are amplifying targeted DNA sequences rather than unintended

sequences present in less specific samples.

Other method improvements will include increased use of

bleach to clean the area and instruments when working with the

different samples of DNA. Currently, the bacterial samples from

Optimizing Quantitative PCR to Distinguish Between Human and Canine Bacterial Samples  47

human and dog fecal samples are handled in separate laminar

flow hoods with separate instruments. As much as space allows,

samples from different species will be handled in different rooms

and at different times. The added control would prevent contami-

nation between the different samples from the same sources.

Other primer sets of interest from other studies conducted

by our laboratory (unpublished data) were employed in this study.

The presence of the esp sequence was assessed in human fecal bac-

terial samples with the esp primer set. The esp primers have been

reported to be specific for strains of Enterococcus isolated from hos-

pitalized patients (Ahmed et al. 2008). The human 1 primer set

is specific for sequences in Bacteroides, but since DNA was isolated

from total bacteria collected from fecal samples, Enterococcus would

also be expected in the sample. However, because the human fecal

samples analyzed in this study were not from clinical settings, the

lack of a strong positive result, a low Cq value, is not unexpected.

A good positive control and samples from clinical settings are nec-

essary to pursue further use of the esp primer set.

Moving forward the next steps in this project include ob-

taining synthetic positive control plasmids that will be diluted to

known copy number to produce a standard curve precise enough

for determination of sequence copy number in samples (USEPA,

2015), adding Taqman probes to our analysis for comparison,

and obtaining complex samples such as influent from wastewater

reclamation facilities and environmental samples from local riv-

ers both after rain events, when bacterial concentrations are high

and during dry periods when concentrations are low. Taqman

chemistry utilizes target specific, internal probes that may be more

specific and less prone to amplification of non-target sequences,

although some studies have shown that careful optimization can

make SYBR technology equally specific and accurate (Tajadini et

al. 201).

With the goal of this work to provide communities and local

48  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

governments information about the source of fecal contamination,

the stakes are high. Decisions about funding for programs to

decrease sources of contamination, the possibility of costs to

homeowners that might upgrade septic systems, the cost to pub-

lic agencies trying to locate broken or leaky sewage pipes, and

the confidence in community members in the safety of their

beaches may be made based on methods developed in this study.

Consequently, every effort will be made to optimize and validate

results and every possible quality control mechanism will be added

to the final protocol.

Acknowledgments

The authors would like to thank Dean Bowen for obtaining the

funding for equipment necessary for this work to be conducted.

In addition, thanks to Jason Burkholder for the initial studies that

provided the basis for this work, thanks to the support of commu-

nities around Anne Arundel County that support the Operation

Clearwater monitoring program and provided funding to develop

molecular methods for quantifying and identifying the source of

contamination in local rivers. Finally, thanks to the Biology labo-

ratory technical staff that has supported our efforts by providing

invaluable assistance in finding reagents, setting up equipment

and troubleshooting issues.

References

Ahmed W, Stewart J, Gardner T, Powell D. 2008. A real-time polymerase chain reaction

assay for quantitative detection of the human-specific enterococci surface protein

marker in sewage and environmental waters. Environ Microbiol. 10(12):3255-3264.

DOI: 10.1111/j.1462-2920.2008.01715.x

Anne Arundel County total maximum daily load restoration plan for bacteria. 2017.

Anne Arundel County: Anne Arundel County Public Works; [accessed 2022 Jan

22]. https://www.aacounty.org/departments/public-works/wprp/bacterial-tm-

dl-plan/3_Draft_Bacteria_TMDL_Restoration_Plan_February_2016.pdf

Green HC, Haugland RA, Varma M, Millen HT, Sorchardt MA, Field KG, Walters WA,

Knight R, Sivanganesen M, Kelty CA, et al. 2014. Improved HF183 quantitative

Optimizing Quantitative PCR to Distinguish Between Human and Canine Bacterial Samples  49

real-time PCR assay for characterization of human fecal pollution in ambient sur-

face water samples. Appl Environ Microbiol. 80(10):3086-3094. DOI: 10.1128/

AEM.04137-13

Green HC, White KM, Kelty CA, Shanks OC. 2014. Development of rapid canine fecal

source identification PCR-based assays. Environ Sci Technol. 48(19):11453-11461.

DOI: 10.1021/es502637b

Harwood VJ, Staley C, Badgely BD, Borges K, Korajkic A. 2013. Microbial source tracking

markers for detection of fecal contamination in environmental waters: relationships

between pathogens and human health outcomes. FEMS Microbiol Rev. 38(1):1-40.

DOI: 10.1111/1574-6976.12031

Haugland RA, Varma M, Sivaganesan M, Kelty C, Peed L, Shanks OC. 2010. Evaluation

of genetic markers from the 16S rRNA gene V2 region for use in quantitative de-

tection of selected Bacteroidales species and human fecal waste by qPCR. Syst Appl

Microbiol. 33(6):348-57. DOI: 10.1016/j.syapm.2010.06.001

Layton A, McKay L, Williams D, Garrett V, Gentry R, Sayler G. 2006. Development

of Bacteroides 16s rRNA gene TaqMan-based real-time PCR assays for estima-

tion of total, human, and bovine fecal pollution in water. Appl Environ Microbiol.

72(6):4214-4224. DOI: 10.1128/aem.01036-05

Simpson JM, Santo Domingo JW, Reasoner DJ. 2002. Microbial source tracking: state

of the science. Environ Sci Technol. 36(24):5279–5288. DOI: 10.1021/es026000b

Tajadini M, Panjehpour M, Javanmard SH. 2014. Comparison of SYBR Green and

TaqMan methods in quantitative real-time polymerase chain reaction anal-

ysis of four adenosine receptor subtypes. Adv Biomed Res. 3:85-90. DOI:

10.4103/2277-9175.127998 

[US EPA] US Environmental Protection Agency. 2005. Microbial source tracking

	 guide document. Cincinnati (OH): US Environmental Protection Agency. Report

No.: EPA/600-R-05-064. [accessed 2022 Jan 22] https://cfpub.epa.gov/si/si_pub-

lic_record_Report.cfm?Lab=NRMRL&dirEntryID=133523

[US EPA] US Environmental Protection Agency. 2012. Recreational water quality criteria.

Washington (DC): US Environmental Protection Agency. Report No.: 820-F-12-058

[US EPA] US Environmental Protection Agency. 2015. Method 1609.1: Enterococci in

water by TaqMan® quantitative polymerase chain reaction (qPCR) with internal

amplification control (IAC) assay. Washington (DC): US Environmental Protection

Agency. Report No.: EPA-820-R-15-099

[US EPA] US Environmental Protection Agency. 2019. Method 1696: characterization of

human fecal pollution in water by HF183/BacR287 TaqMan® quantitative poly-

merase chain reaction (qPCR) assay. Report No.: EPA-821-R-19-002

50  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

Ashley Dyjack

An Examination of
Effort-Based Grading
Effectiveness
Abstract

The traditional standards-based or competency-based grading

systems, preferred by American schools and colleges, do not incor-

porate non-academic student achievement factors, such as effort,

attendance, or attitude when evaluating student performance.

This paper reviews current literature on the effectiveness of an al-

ternative grading system, called effort-based grading, that includes

criteria for educators to represent non-academic achievement fac-

tors in student evaluation. The research will show that effort-based

grading is effective in motivating student achievement up until stu-

dents are able to exert the least amount of effort for the maximum

achievement, where then standards-based or competency-based

grading systems become more effective.

Introduction

Despite American schools and colleges using mostly a stan-

dards-based education system, many instructors tend to incorporate

non-academic achievement factors into their grading systems,

such as student effort, attendance, and attitudes (McMillan, 2018).

This addition to the grading scale may be due to instructors want-

ing to represent the work the students are putting forth that may

not be represented solely in their performance-based grades.

However, according to McMillan, “Most assessment experts agree

that nonacademic indicators should have little or no bearing on

the academic performance grade” (McMillan, 2018, p. 438). This

paper will look at the effectiveness of incorporating student effort

Key words

effort-based grading

mindset

motivation

standards or competency-based

grading

alternative institutions

Faculty Mentor

Jackie Gambone, Ph.D.
Professor, Teach Institute

An Examination of Effort-Based Grading Effectiveness  51

in grading, whereas effectiveness is defined as the ratio of effort to

performance. The following sections include a literature review,

research gap identification, and suggested areas for future study.

Literature Review

Over the years, researchers have looked theoretically and empiri-

cally at the correlation between student effort and student grades.

They looked within the parameters of student performance in par-

adigms that included student effort as part of the grading criteria

(Swinton, 2010), absolute and relative grading systems (Paredes,

2017), and instructor influence(s) on the gap between student

effort and grades (Highfill & Marcum, 2019). In each case, the

data shows that effort-based grading is effective up until a certain

level of student ability or achievement, where then absolute or

standards-based grading becomes more effective (Swinton, 2010;

Paredes, 2017, Highfill & Marcum, 2019).

Swinton (2010) examines the effectiveness of Benedict

College’s Success Equals Effort (SE2) policy for freshmen and

sophomore level courses where the student’s grade is calculated

using weighted categories for knowledge and effort. The model

includes 40% knowledge and 60% effort for freshman courses and

the reverse for sophomore courses (Swinton, 2010). See Appendix A
for the grading matrices. Since the model used by Benedict College in-

cludes grades for both effort and knowledge, the matrices indicate

how each grade impacts the final overall grade. In the freshmen

model, where student effort is weighted at 60% of the final grade,

a student’s final grade will reflect more on their effort than knowl-

edge; whereas in the sophomore model, students must display

their knowledge rather than rely on their effort to receive their

desired grade.

Benedict College implemented the policy to increase the mar-

ket value of its graduates to future employers and its graduation

rates (Swinton, 2010). A follow-up study by Swinton (2014), showed

52  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

that the policy did not significantly increase graduation rate, but

did contribute to a reduced amount of time for degree comple-

tion. Swinton (2010) argues that the policy’s driving question is

“how do you induce all students to give effort without lowering

the amount of knowledge gained by the students or weakening or

minimizing the signal that is sent to future employers” (p. 1178).

The results showed that there is a positive correlation between a

student’s effort grade and a student’s knowledge grade up until a

certain point where a student’s academic ability allowed them to

achieve the maximum desired grade with the minimum amount

of effort (Swinton, 2010). This is evidence shown in the gap be-

tween students who have natural academic ability and those who

must consistently strive to match their peers and get the desired or

expected grades. This view can also be impacted by the percent-

age of effort verses true knowledge. Employers often want to know

how much a candidate already knows verses the effort they would

put in to learn what they need to know for the required position.

Swinton (2010) highlights that the impact often comes from

the instructor’s view of the learning process, which falls under

three categories: maximum grades, effort, or knowledge. At the

university level, instructors need to consider potential employers

will evaluate a student’s grades and what that information will tell

the employer about the student’s ability. For example, if an instruc-

tor just gives all students the maximum grade, the employer will

have no knowledge of the student’s ability and the student would

not be motivated to apply effort to the learning process. Whereas,

if the instructor decides to maximize student effort, students will

apply the effort needed to achieve their desired grade but does not

tell employers anything about student knowledge or ability. Lastly,

if the instructor maximizes knowledge, employers will be able to

determine student ability, however lower ability students may not

put effort into the learning process.

Like Swinton’s (2010) conclusions that implemented a partial

An Examination of Effort-Based Grading Effectiveness  53

effort-based system, Paredes, (2017) shows that the same conclu-

sion applies to a full implementation of an effort-based grading

system. Paredes theoretically and empirically explores the rela-

tionship between a student’s ability and the amount of effort the

student puts forth within a relative (performance-based) and abso-

lute (standards-based) grading environment. The model developed

for this study, “shows that the grading system can influence both

the total amount of effort in a class and the level of individual

effort throughout the ability distribution” (Paredes, 2017, p. 114).

Assuming low ability students did not give up, the model predicted

that these students would flourish under a relative grading system,

but struggle within an absolute system where the standards are

higher, and the cost of the extra effort would not be worth the re-

sults (Paredes, 2017). The reverse is true for high ability students

as in a relative system, they may not be inclined to exert as much

effort due to lower standards (Paredes, 2017). Using a unique

data set from the University of Chile (where the grading system

changed from absolute to relative and then back to absolute), the

author showed that the model predicted the data trends correctly.

Paredes (2017) concludes that student effort has a positive effect on

a relative grading environment until the student’s ability increases

to the point where the effort no longer is needed to influence the

grade and that the choice of grading system will depend on the

instructor or school’s target student audience.

The conclusions drawn by Swinton (2010) and Parades (2017),

that students want to achieve the maximum grade for the least

amount of effort, supports the reflection of Highfill and Marcum

(2019), showing that students may “discuss strategies to ‘game’

the system to ultimately achieve a desired score without strenu-

ous student effort by the student” (p. 61). Highfill and Marcum

reflect on how instructor choices may affect the gap between a stu-

dent’s effort and grades. To create the gap between student effort

and grades, the adapted model used by the authors introduces a

54  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

random component to reflect that there is not a perfect correlation

between the amount of effort a student puts forth and the grade

the student earns (Highfill & Marcum, 2019). Instructors may see

the gap as the result of students misjudging their own ability when

attempting to calculate how much effort they need to receive their

desired grade or by their own choices due to the subjective nature

of grading (partial credit, extra credit, student bias, etc.) or the

setup of the grading environment (letter grades, pass/fail, plus/

minus), assuming the instructor has leeway, where they must des-

ignate cut offs for each achievement (Highfill & Marcum, 2019).

Overall, the efficiency of effort-based grading will depend on your

student audience as well as paradigms that exist in the instructor’s

grading structure.

Research Gap Identification

Given that student ability and achievement tends to limit the ef-

fectiveness of effort-based grading, potential research gaps include

evaluating whether the school environment (i.e. an alternative in-

stitution) could potentially increase the effectiveness of effort-based

grading, developing a grading system to bridge the gap between

the effort-based and the standards-based grading systems, and

determining how a student’s intrinsic motivation and mindset to

learn can affect how much effort a student is willing to exert when

it comes to effort-based learning.

In the United States, “within public education, alternative

schools exist as one form of dropout prevention and youth re-en-

gagement in school, with approximately 3% of United States (U.S.)

high school students attending alternative high schools” (Tierney,

2020, p. 242). An alternative institution often provides “at risk”

students, who may not have been successful in a traditional com-

prehensive school based on behavior or academic performance,

opportunities to learn in a non-traditional school environment.

At-risk students are defined as those who require interventions

An Examination of Effort-Based Grading Effectiveness  55

for continued academic success. One advantage an alternative

institution offers is that student success is frequently redefined to

include non-academic factors such as student social and academic

engagement, student ownership of learning goals, and education

(including graduation progression) and assisting students in iden-

tity development within an academic community (Tierney, 2020).

This can be reflected upon by higher education institutions as well.

Since alternative institutions may already include non-aca-

demic factors in their definition of student success, the addition of

effort-based grading may assist them in reaching their goals since

it would allow for student effort to be accounted for and visible

towards student academic achievement. However, there may be

a risk to adding an effort-based grading system to an alternative

institution since students could potentially find a way to exert the

minimal amount of effort for the maximum grade, like students in

comprehensive institutions, except in this case, these students most

likely would not be ready to transition to a standards-based grad-

ing system. If this occurred, a stop gap or bridge system would

need to be researched or developed, to assist the students in the

alternative institution to continue to progress towards their goals.

Carol Dweck (2006) discusses the fixed and growth mindsets.

Fixed mindsets are characterized as needing to be perfect, failure

being the result, negative self-talk, that your qualities are perma-

nent, etc. Whereas with a growth mindset, failure is opportunity,

seeking progress not perfection, embracing constructive criticism

to grow and improve, etc. See Appendix B. If a student has a fixed

mindset, the less likely they will be to strive for a desired grade

because they would have already decided it is not possible. With a

growth mindset, effort becomes critical and the tool a student can

use to achieve their desired goal.

The student population’s learning motivation and mindset

should be determined and potentially improved before introduc-

ing an effort-based grading system to an alternative institution

56  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

environment to assist with getting the maximum benefit for the

students. This is due to the majority of these “at risk” students

having negative experiences with school and thus, even with the

addition of an effort-based grading system, may not attempt work

if they believe they will just fail in the end. Again, higher educa-

tion institutions should consider the impact as students transition

to them from the K-12 environment.

Alfie Kohn (1994) defines two types of motivation: intrin-

sic motivation, which is ‘an interest in the task for its own sake’

and extrinsic motivation, in which ‘the completion of the task is

seen chiefly as a prerequisite for obtaining something else.’ Kohn’s

research shows that students who are extrinsically motivated are

more likely to lose interest in the task they are working on since

the end goal is to get the promised reward. Applying this to a class-

room environment may mean that students who are motivated by

obtaining passing grades will only put forth the minimum effort to

receive their desired grade, thus curbing a student’s desire to learn

and their creativity. On the other hand, if students are intrinsically

motivated, an effort-based grading system may allow them to ex-

plore their desire to learn about a topic, while rewarding them for

the effort they put into the task.

Lastly, in another article, Kohn (2015) describes the two

mindsets set forth by Carol Dweck (2006), the fixed mindset, where

a person’s intelligence and talent is set and unable to be changed

and the growth mindset, that says that every person is capable

of learning something with enough effort. Students who have a

growth mindset and believe they can learn the subject or topic at

hand, are more likely to put forth the effort needed to persevere

through a task, as mentioned previously. In an alternative insti-

tution environment, aligning an effort-based grading system with

encouraging the development of growth mindsets in students,

may assist students in having a positive school experience, which

in turn may increase the student’s intrinsic motivation to learn and

An Examination of Effort-Based Grading Effectiveness  57

persevere through challenging tasks.

The identified research gaps are not suggesting that one gap

is more important than another, however, changing the institution-

al environment may increase the benefit of the implementation of

an effort-based grading system. Due to the specialized nature, staff

at alternative institutions may receive more training or profession-

al development opportunities in mindset and motivation theories.

Areas for Future Study

The literature review and research gap identification sections

have highlighted several areas that would benefit from addi-

tional research. These areas include: the conditions in which an

effort-based grading system may be effectively implemented, the

effects on intrinsic motivation and growth mindsets on student ef-

fort, and the development of a grading system that bridges the

gap between an effort-based and standards-based grading system.

One area of future study should focus on the effectiveness

of effort-based grading in an alternative institution environment,

where student achievement already includes non-academic fac-

tors. This study or studies should include how to improve student

intrinsic motivation, changing student’s mindset from fixed to

growth, and the effectiveness of effort-based grading for “at-risk”

students. The researcher would like to implement a structured

grading system that includes student effort as compared to the

current system. A randomized field experiment could prove useful

where a control group maintains the current grading system and a

treatment group works within the confines of a partial effort-based

system. The end-goal of the researcher’s alternative institution

program is to prepare students to return to their comprehensive

school.

Other future areas of study include how being evaluated un-

der an effort-based grading system may affect employer’s outlook

of students, how effort-based grading may inflate student grades

58  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

in an alternative environment and the effects of returning to a

comprehensive school and standards-based grading system, how

effort-based grading could help students who have a low ability

in a specific subject to avoid failing and start the conversation on

how the instructor can help the student overcome the low ability

in the subject, and the effect an effort-based grading system could

have on low ability students on having a positive interaction with

a school environment overall.

Conclusion

This paper reviewed current literature on the effectiveness of ef-

fort-based grading, research gap identification, and areas of future

study. The conclusion drawn from the literature review is that ef-

fort-based grading is effective up until students can perform the

minimum amount of effort for the maximum grade. Lastly, the

research gap identified multiple areas of future study that may

help determine if effort-based grading may be more effective in

an alternative education environment.

References

Dweck, C. (2006). Mindset. New York, NY: Random-house Publishing.

Highfill, J., & Marcum, T. M. (2019). Modeling undergraduate student effort: Exploring

the gap between effort and grade. Journal of Higher Education Theory and Practice, 19(1),

56-66. https://doi.org/10.33423/jhetp.v19i1.668

Kohn, A. (1994). The Risks of Rewards (ED3769990). ERIC. https://files.eric.ed.gov/full-

text/ED376990.pdf

Kohn, A. (2015). The “mindset” mindset: What We Miss By Focusing on Kids’ Attitudes. https://

www.alfiekohn.org/article/mindset/

McMillan, J. H. (2018). Classroom assessment: Principles and practice that enhance student learning and

motivation. (7th ed.). Pearson.

Paredes, V. (2017). Grading system and student effort. Education Finance and Policy 2017; 12(1):

107–128. https://doi.org/10.1162/EDFP_a_00195

Swinton, O. H. (2015). An A for effort. American Economic Review, 105(5), 616–620. https://doi.

org/10.1257/aer.p20151116

Swinton, O. H. (2010). The effect of effort grading on learning. Economics of Education Review,

29(6), 1176–1182. http://doi.org/10.1016/j.econedurev.2010.06.014

An Examination of Effort-Based Grading Effectiveness  59

Tierney, G. (2020). Ideational resources and alternative definitions of success: Reorienting to Education

and Developing Identities in an Alternative High School. High School Journal, 103(4), 241–261.

https://doi.org/10.1353/hsj.2020.0015

Appendix A

Benedict College Success Equals Effort (SE2) Grading Matrices

60  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

Appendix B

 (Dweck, 2006)

Acknowledgements

The researcher would like to thank her mentor Dr. Jaclyn Gambone

for her tremendous support on this project. The researcher would

also like to acknowledge the students at the alternative institution

whom she teaches; they inspired this research.

Exploring the Hill Cipher through Linear Algebra and Python  61

Thao-Nhi Luu and Maria Nicos Alain Pasaylo

Exploring the Hill
Cipher through
Linear Algebra
and Python
Abstract

For most of human history, security of data communication has

been essential. The relevance of encryption in times of war and

(more recently) in the information age is difficult to overestimate.

During the 20th century, advances in mathematics and technology

prompted the proliferation of many new methods of encryption.

Among these methods, the Hill cipher, a polygraphic substitution

cipher introduced in 1929, pioneered the use of modular arithme-

tic and linear algebra in an encryption algorithm. In this paper,

we explore the Hill cipher. This expository article includes a dis-

cussion of the mathematical framework and implementation of

the cipher, as well as examples, a method of plaintext attack, and

Python code for the Hill cipher.

1. Foundations of Cryptography

Oftentimes, we interchangeably use the words cryptography, cryp-

tology, and cryptoanalysis. Nevertheless, these terms have different

meanings. Cryptography deals with the techniques essential for

data protection over communication systems; cryptology is the

general term given to the study of communication over unpro-

tected channels; cryptoanalysis is the process of breaking secure

communication systems (for example, frequency analysis). See [9]

for further details.

To introduce some standard concepts and terminology, let

62  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

us assume that we have two people, Lin and Al, who are sharing

messages using an encryption method. In our story, Lin needs to

securely send a message to Al. The message Lin is going to send

to Al is called the plaintext. To securely send this message, Lin will

use a key to encode, or encrypt, the plaintext. This key is a piece of

information, sometimes a number, a string of characters, or a ma-

trix, which encodes the plaintext using an encryption algorithm.

The encoded message is called the ciphertext. Lin then sends this

ciphertext over public or unsecured channels. Al receives this ci-

phertext and then uses a key to privately decode, or decrypt, the

ciphertext back into the original plaintext message using a decryp-

tion algorithm.

To illustrate these ideas, we briefly describe one of the sim-

plest – and perhaps one of the earliest – encryption algorithms

known: the Caesar cipher. Developed around 100 BC, the Caesar

cipher was used by Julius Caesar to send secret messages to his

generals in the field. With this method, Lin and Al associate to

every letter of the alphabet the corresponding number: a corre-

sponds to 0, b corresponds to 1, and so on, all the way to z, which

corresponds to 25. The Caesar cipher key, a whole number be-

tween 0 and 25 (inclusive), is privately agreed upon between Lin

and Al before any encoding. Lin chooses this number to be 5, her

favorite season of The Simpsons, and secretly shares this choice with

Al. Then Lin and Al are separated to opposite ends of the bat-

tlefield. The following morning, Lin takes her plaintext message,

which reads attack, and replaces every letter with the corresponding

number, yielding the array of numbers [0, 19, 19, 0, 2, 10]. Then

Lin encrypts the message by adding the preselected key, the num-

ber 5, to each number in the array to yield [5, 24, 24, 5, 7, 15]. This

is translated into the ciphertext FYYFHP. This ciphertext is carried

by a brave soldier across the battlefield. Although the ciphertext

may be easily intercepted, any prying eyes do not have access to

the key, and so they are unable to read it. When Al receives the

Exploring the Hill Cipher through Linear Algebra and Python  63

message, they convert the ciphertext into numbers, apply the key

to these numbers by subtracting 5, and convert the shifted num-

bers back into the original message, attack.

The Caesar cipher is an example of private key cryptog-

raphy, where the key used to encrypt and decrypt the message

is known only to the sender and receiver. The Caesar cipher is

also an example of symmetric key cryptography because both the

sender and receiver use the same private key. Public key cryptog-

raphy, in contrast, uses a public and a private key. In this case, a

public key is known to everyone, and it is used to convert plain-

text to ciphertext. The receiver then uses a distinct private key

to decode the ciphertext. The most prominent and widely used

public key cryptography system today is RSA named after its in-

ventors Rivest, Shamir, and Adleman. RSA uses very large prime

numbers to create public keys and leverages the computational

difficulty of factoring large numbers. Further discussion of pub-

lic key cryptography and this particular algorithm is beyond the

scope of this paper. See [9] for further details.

We return to our discussion of (symmetric) private key cryp-

tography (where the sender and receiver share the same secret key)

and describe some particular types of encryption algorithms in

this category.

The Caesar cipher is just one example of a substitution ci-

pher, in which letters of the alphabet, represented by the numbers

0 through 25, are ‘scrambled’ according to a fixed permutation

– or reordering – of those numbers. Although simple to imple-

ment, these ciphers are easily broken by using frequency counts

of letters. There are more sophisticated methods for producing

this ‘scrambling’. This includes the affine cipher, which uses an af-

fine linear transformation to scramble the letters of the alphabet.

Another example is the well-known Enigma Machine. It was used

by Nazi Germany in WWII and cracked by allied forces.

Another class of encryption methods relies on a block cipher

64  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

algorithm. Block ciphers are any encryption method that receives

all blocks of characters of fixed block size and produces an output

of encrypted blocks. Well-known block encryption methods in-

clude the Vigenère cipher, the Playfair cipher, the ADFGX cipher,

and the Hill cipher. We focus on the Hill cipher for the remainder

of this paper.

Lester Hill, an American mathematician and educator, in-

vented the encryption method that now bears his name in 1929.

See [3, 4] for further details. Hill’s method uses elementary meth-

ods in modular arithmetic and linear algebra. The Hill cipher “…

seems never to have been used much in practice. Its significance

is that it was perhaps the first time that algebraic methods (linear

algebra and modular arithmetic) were used in cryptography in an

essential way.” [9]

Figure 1

Hill cipher Machine

Exploring the Hill Cipher through Linear Algebra and Python  65

2. Mathematical formalism

2.1 Modular Arithmetic
Careful readers may have noticed one possible flaw in our earlier description of the Caesar cipher.

The algorithm instructs the parties involved, Lin and Al, to establish a secret key – a single number

to shift the letters of the alphabet forward when encoding and backward when decoding. But, what

happens if the shift pushes the numerical value of a letter over 25? For example, the letter x is re-

placed by 23. If we shift by Lin and Al’s secret key of 5, we obtain 28 – and this number does not
correspond to any letter of our alphabet. The simple solution is to take the remainder of 28 when

divided by 25. The letter x encodes as 3. In this way, we can shift every letter of the alphabet. This

process of taking remainders and carrying out numerical computations is formalized in mathemat-

ics with modular arithmetic. Modular arithmetic is essential in almost all cryptographic methods

that convert plaintext to numbers and apply algebraic tools to encode this numerical data. We de-

scribe few basic definitions and properties of integer arithmetic here.

First, we define the greatest common divisor of two positive integers, m and n, denoted

gcd(m, n), to be the largest integer that divides both m and n. For example, we have gcd(6, 8) = 2

and gcd(3, 14) = 1. Next, let us fix an integer d > 1. For any integer n, the Division Algorithm guar-

antees that we can always find unique integers q and r, where 0 ≤ r < d, such that

A proof of this result can be found in [7]. We call q the quotient and r the remainder when n is

divided by d. This result guarantees that division of any integer by d results in a unique remainder

between 0 and d ‒ 1. For example, let d = 7 and divide a few numbers by d:

With a divisor d fixed, we say that two integers m and n are congruent mod d, written m ≡ n mod d,

if they have the same remainder when divided by d. For the following examples, we again fix d = 7:

d > 1. For any integer n, the Division Algorithm guarantees that we can always find unique integers q and r, where

0 ≤ r < d, such that

n = qd+ r.

A proof of this result can be found in [7]. We call q the quotient and d the remainder when n is divided by d. This

result guarantees that division of any integer by d results in a unique remainder between 0 and d− 1. For example, let

d = 7 and divide a few numbers by d:

13 = 1 · 7 + 6, and so 13 has a remainder of 6 when divided by 7.
6 = 0 · 7 + 6, and so 6 has a remainder of 6 when divided by 7.

−78 = (−12) · 7 + 6, and so -78 has a remainder of 6 when divided by 7.

With a divisor d fixed, we say that two integers m and n are congruent mod d, written m ≡ n mod d, if they have the

same remainder when divided by d. For the following examples, we again fix d = 7:

13 ≡ 6 mod 7, because 13 and 6 both have a remainder of 6 when by divided by 7.
−6 ≡ 1 mod 7, because -6 and 1 both have a remainder of 1 when by divided by 7.
12 ≡ 96 mod 7, because 12 and 96 both have a remainder of 5 when divided by 7.

We provide a few elementary but important results in modular arithmetic here; see [7] for further discussion and details.

Theorem 1. Let d > 1.

1) If r ≡ s mod d and u ≡ v mod d, then r + u ≡ s+ v mod d, and ru ≡ sv mod d.

2) Let 0 ≤ r, s < d. Then r ≡ s mod d if and only if r = s.

Here is an example to illustrate part 1). Let’s take d = 7, and for brevity we write r ≡ s if r ≡ s mod 7. Now let

us take the product of the two integers 13 and −6 and reduce mod 7: 13 · (−6) = −78 ≡ 6. Since 13 ≡ 6 and

−6 ≡ 1, we could also write 13 · (−6) ≡ 6 · 1 = 6 ≡ 6. All of this just says that we can add and multiply integers

mod d. Reducing our sums or products along the way at any step and the result will always be the same mod d. Part

2) of the Theorem says that any integer is equivalent to exactly one integer from the set {0, 1, . . . , d− 1}, mod d. This

number is just its remainder. For example, with a modulus of d = 7, 13 is congruent to one and only one integer from

the set {0, 1, 2, 3, 4, 5, 6}. The fact that this can be done uniquely will be important in the next section. We will refer

to replacing any integer by its equivalent unique remainder as ‘reduction mod d’.

Standard arithmetic of real numbers has a well-known property: if r is a nonzero number, we can always multiply

by (1/r) to get 1. For example, 6 · (1/6) = 1, and (−1/5) · (−5) = 1. We say that 1/r is the multiplicative inverse of

r (and vice versa), and we write 1/r = r−1. So, 6 and 1/6 are multiplicative inverses of each other, and so again for

−1/5 and −5. We encounter multiplicative inverses in modular arithmetic as well. If the product ab of two integers a

4

d > 1. For any integer n, the Division Algorithm guarantees that we can always find unique integers q and r, where

0 ≤ r < d, such that

n = qd+ r.

A proof of this result can be found in [7]. We call q the quotient and d the remainder when n is divided by d. This

result guarantees that division of any integer by d results in a unique remainder between 0 and d− 1. For example, let

d = 7 and divide a few numbers by d:

13 = 1 · 7 + 6, and so 13 has a remainder of 6 when divided by 7.
6 = 0 · 7 + 6, and so 6 has a remainder of 6 when divided by 7.

−78 = (−12) · 7 + 6, and so -78 has a remainder of 6 when divided by 7.

With a divisor d fixed, we say that two integers m and n are congruent mod d, written m ≡ n mod d, if they have the

same remainder when divided by d. For the following examples, we again fix d = 7:

13 ≡ 6 mod 7, because 13 and 6 both have a remainder of 6 when by divided by 7.
−6 ≡ 1 mod 7, because -6 and 1 both have a remainder of 1 when by divided by 7.
12 ≡ 96 mod 7, because 12 and 96 both have a remainder of 5 when divided by 7.

We provide a few elementary but important results in modular arithmetic here; see [7] for further discussion and details.

Theorem 1. Let d > 1.

1) If r ≡ s mod d and u ≡ v mod d, then r + u ≡ s+ v mod d, and ru ≡ sv mod d.

2) Let 0 ≤ r, s < d. Then r ≡ s mod d if and only if r = s.

Here is an example to illustrate part 1). Let’s take d = 7, and for brevity we write r ≡ s if r ≡ s mod 7. Now let

us take the product of the two integers 13 and −6 and reduce mod 7: 13 · (−6) = −78 ≡ 6. Since 13 ≡ 6 and

−6 ≡ 1, we could also write 13 · (−6) ≡ 6 · 1 = 6 ≡ 6. All of this just says that we can add and multiply integers

mod d. Reducing our sums or products along the way at any step and the result will always be the same mod d. Part

2) of the Theorem says that any integer is equivalent to exactly one integer from the set {0, 1, . . . , d− 1}, mod d. This

number is just its remainder. For example, with a modulus of d = 7, 13 is congruent to one and only one integer from

the set {0, 1, 2, 3, 4, 5, 6}. The fact that this can be done uniquely will be important in the next section. We will refer

to replacing any integer by its equivalent unique remainder as ‘reduction mod d’.

Standard arithmetic of real numbers has a well-known property: if r is a nonzero number, we can always multiply

by (1/r) to get 1. For example, 6 · (1/6) = 1, and (−1/5) · (−5) = 1. We say that 1/r is the multiplicative inverse of

r (and vice versa), and we write 1/r = r−1. So, 6 and 1/6 are multiplicative inverses of each other, and so again for

−1/5 and −5. We encounter multiplicative inverses in modular arithmetic as well. If the product ab of two integers a

4

d > 1. For any integer n, the Division Algorithm guarantees that we can always find unique integers q and r, where

0 ≤ r < d, such that

n = qd+ r.

A proof of this result can be found in [7]. We call q the quotient and d the remainder when n is divided by d. This

result guarantees that division of any integer by d results in a unique remainder between 0 and d− 1. For example, let

d = 7 and divide a few numbers by d:

13 = 1 · 7 + 6, and so 13 has a remainder of 6 when divided by 7.
6 = 0 · 7 + 6, and so 6 has a remainder of 6 when divided by 7.

−78 = (−12) · 7 + 6, and so -78 has a remainder of 6 when divided by 7.

With a divisor d fixed, we say that two integers m and n are congruent mod d, written m ≡ n mod d, if they have the

same remainder when divided by d. For the following examples, we again fix d = 7:

13 ≡ 6 mod 7, because 13 and 6 both have a remainder of 6 when by divided by 7.
−6 ≡ 1 mod 7, because -6 and 1 both have a remainder of 1 when by divided by 7.
12 ≡ 96 mod 7, because 12 and 96 both have a remainder of 5 when divided by 7.

We provide a few elementary but important results in modular arithmetic here; see [7] for further discussion and details.

Theorem 1. Let d > 1.

1) If r ≡ s mod d and u ≡ v mod d, then r + u ≡ s+ v mod d, and ru ≡ sv mod d.

2) Let 0 ≤ r, s < d. Then r ≡ s mod d if and only if r = s.

Here is an example to illustrate part 1). Let’s take d = 7, and for brevity we write r ≡ s if r ≡ s mod 7. Now let

us take the product of the two integers 13 and −6 and reduce mod 7: 13 · (−6) = −78 ≡ 6. Since 13 ≡ 6 and

−6 ≡ 1, we could also write 13 · (−6) ≡ 6 · 1 = 6 ≡ 6. All of this just says that we can add and multiply integers

mod d. Reducing our sums or products along the way at any step and the result will always be the same mod d. Part

2) of the Theorem says that any integer is equivalent to exactly one integer from the set {0, 1, . . . , d− 1}, mod d. This

number is just its remainder. For example, with a modulus of d = 7, 13 is congruent to one and only one integer from

the set {0, 1, 2, 3, 4, 5, 6}. The fact that this can be done uniquely will be important in the next section. We will refer

to replacing any integer by its equivalent unique remainder as ‘reduction mod d’.

Standard arithmetic of real numbers has a well-known property: if r is a nonzero number, we can always multiply

by (1/r) to get 1. For example, 6 · (1/6) = 1, and (−1/5) · (−5) = 1. We say that 1/r is the multiplicative inverse of

r (and vice versa), and we write 1/r = r−1. So, 6 and 1/6 are multiplicative inverses of each other, and so again for

−1/5 and −5. We encounter multiplicative inverses in modular arithmetic as well. If the product ab of two integers a

4

66  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

We provide a few elementary but important results in modular arithmetic here; see [7] for further

discussion and details.

Theorem 1. Let d > 1.

	1) If r ≡ s mod d and u ≡ v mod d, then r + u ≡ s + v mod d, and ru ≡ sv mod d.

2) Let 0 ≤ r, s < d. Then r ≡ s mod d if and only if r = s.

Here is an example to illustrate part 1). Let’s take d = 7. For brevity, we write r ≡ s if

r ≡ s mod 7. Now let us take the product of the two integers 13 and –6 and reduce mod 7:

13 · (–6) = ‒78 ≡ 6. Since 13 ≡ 6 and –6 ≡ 1, we could also write 13 · (–6) ≡ 6 · 1 = 6 ≡ 6.

For the sum, 13 + (–6) ≡ 6 + 1 = 7 ≡ 7. All of this just says that we can add and mul-

tiply integers mod d. Reducing our sums or products along the way at any step and the result

will always be the same mod d. Part 2) of the Theorem says that any integer is equivalent to

exactly one integer from the set {0, 1, . . . , d – 1}, mod d. This number is just its remainder.

For example, with a modulus of d = 7, 13 is congruent to one and only one integer from the set

{0, 1, 2, 3, 4, 5, 6}. The fact that this can be done uniquely will be important in the next section. We

will refer to replacing any integer by its equivalent unique remainder as ‘reduction mod d ’.

Standard arithmetic of real numbers has a well-known property: if r is a nonzero number,

we can always multiply by (1/r) to get 1. For example, 6 · (1/6) = 1, and (–1/5) · (–5) = 1. We

say that 1/r is the multiplicative inverse of r (and vice versa), and we write 1/r = r –1. So, 6 and 1/6

are multiplicative inverses of each other, and so again for –1/5 and –5. We encounter multiplica-

tive inverses in modular arithmetic as well. If the product ab of two integers a and b is congruent

mod d, we say that b is the modular inverse of a (and vice versa). To illustrate, let’s use the modulus

d = 7 again. Since

we say that the modular inverse of 3 is 5 (and vice versa). However, unlike (regular) inverses of non-

zero numbers, an integer does not necessarily have a modular inverse mod d. For example, if our

modulus is d = 4, there is no integer k such that 2 · k ≡ 1 mod 4; that is, 2 has no modular inverse

mod 4. This is because just 2 · k is a multiple of 2, and multiples of 2 can only ever have remainders

of 0 or 2 when divided by 4. Nevertheless, there is an easy way to determine if an integer n has a

modular inverse mod d, given by the following result, which is obtained by an application of the

Euclidean Algorithm:

and b is congruent mod d, we say that b is the modular inverse of a (and vice versa). To illustrate, let’s use the modulus

d = 7 again. Since

3 · 5 = 15 ≡ 1 mod 7,

we say that the modular inverse of 3 is 5 (and vice versa). However, unlike (regular) inverses of nonzero numbers,

an integer does not necessarily have a modular inverse mod d. For example, if our modulus is d = 4, there is no

integer k such that 2 · k ≡ 1 mod 4; that is, 2 has no modular inverse mod 4. This is because just 2 · k is a multiple

of 2, and multiples of 2 can only ever have remainders of 0 or 2 when divided by 4. Nevertheless, there is an easy

way to determine if an integer n has a modular inverse mod d, given by the following result, which is obtained by an

application of the Euclidean Algorithm:

Theorem 2. Let d > 1. An integer k has a modular inverse mod d if and only if gcd(d, k) = 1.

See [7] for details. (Note: two integers d, k satisfying the property gcd(d, k) = 1 are said to be relatively prime, and

we will use this terminology). Modular inverses allow us to write some fractions as integers, mod d. If we take d = 7

for our modulus, then 5 is guaranteed to have an inverse mod 7, since gcd(5, 7) = 1. By an exhaustive search through

the remainders {0, 1, 2, 3, 4, 5, 6} of 7, we can find that 5 · 3 = 15 ≡ 1 mod 7. Hence, the modular inverse of 5 is 3.

This allows us to write 1
5 = 5−1 ≡ 3 mod 7. We will use this property of modular inverses below, when we define the

modular inverse of a matrix.

2.2 Matrices and matrix algebra

Let m and n be positive integers. An m× n matrix is a rectangular array




a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n

...
...

...
...

am1 am2 am3 . . . amn




in which each entry, aij , of the matrix is a real number1 (we also refer to aij as the (i, j) entry). An m× n matrix has

m rows and n columns. Matrices are usually denoted by capital letters. For our applications, we are interested only in

square matrices where m = n; i.e., where the number of rows and columns are the same. A 2× 2 square matrix looks

like

a11 a12
a21 a22



1Matrices can also be constructed with other kinds of numbers for these entries, such as the complex numbers, the quaternions, and elements of
finite fields, to name a few. However, these will not be needed here.

5

Exploring the Hill Cipher through Linear Algebra and Python  67

Theorem 2. Let d > 1. An integer k has a modular inverse mod d if and only if gcd(d, k) = 1.

See [7] for details. (Note: two integers d, k satisfying the property gcd(d, k) = 1 are said to be rel-

atively prime, and we will use this terminology). Modular inverses allow us to write some fractions

as integers, mod d. If we take d = 7 for our modulus, then 5 is guaranteed to have an inverse

mod 7, since gcd(5, 7) = 1. By an exhaustive search through the remainders {0, 1, 2, 3, 4, 5, 6} of 7,

we can find that 5 · 3 = 15 ≡ 1 mod 7. Hence, the modular inverse of 5 is 3. This allows us to write
1–
5 = 5–1 ≡ 3 mod 7. We will use this property of modular inverses below, when we define the modular

inverse of a matrix.

2.2 Matrices and Matrix Algebra
Let m and n be positive integers. An m × n matrix is a rectangular array

in which each entry, aij , of the matrix is a real number1 (we also refer to aij as the (i, j) entry). An

m × n matrix has m rows and n columns. Matrices are usually denoted by capital letters. For our

applications, we are interested only in square matrices where m = n; i.e., where the number of rows

and columns are the same. A 2 × 2 square matrix looks like

where a11, a12, a21, and a22 are numbers. Matrices can be multiplied together. This method of mul-

tiplication needs to be described. First suppose A is a 1 × n matrix and B is an n × 1 matrix:

1 Matrices can also be constructed with other kinds of numbers for these entries, such as the complex numbers, the quaternions,
and elements of finite fields, to name a few. However, these will not be needed here.

and b is congruent mod d, we say that b is the modular inverse of a (and vice versa). To illustrate, let’s use the modulus

d = 7 again. Since

3 · 5 = 15 ≡ 1 mod 7,

we say that the modular inverse of 3 is 5 (and vice versa). However, unlike (regular) inverses of nonzero numbers,

an integer does not necessarily have a modular inverse mod d. For example, if our modulus is d = 4, there is no

integer k such that 2 · k ≡ 1 mod 4; that is, 2 has no modular inverse mod 4. This is because just 2 · k is a multiple

of 2, and multiples of 2 can only ever have remainders of 0 or 2 when divided by 4. Nevertheless, there is an easy

way to determine if an integer n has a modular inverse mod d, given by the following result, which is obtained by an

application of the Euclidean Algorithm:

Theorem 2. Let d > 1. An integer k has a modular inverse mod d if and only if gcd(d, k) = 1.

See [7] for details. (Note: two integers d, k satisfying the property gcd(d, k) = 1 are said to be relatively prime, and

we will use this terminology). Modular inverses allow us to write some fractions as integers, mod d. If we take d = 7

for our modulus, then 5 is guaranteed to have an inverse mod 7, since gcd(5, 7) = 1. By an exhaustive search through

the remainders {0, 1, 2, 3, 4, 5, 6} of 7, we can find that 5 · 3 = 15 ≡ 1 mod 7. Hence, the modular inverse of 5 is 3.

This allows us to write 1
5 = 5−1 ≡ 3 mod 7. We will use this property of modular inverses below, when we define the

modular inverse of a matrix.

2.2 Matrices and matrix algebra

Let m and n be positive integers. An m× n matrix is a rectangular array




a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n

...
...

...
...

am1 am2 am3 . . . amn




in which each entry, aij , of the matrix is a real number1 (we also refer to aij as the (i, j) entry). An m× n matrix has

m rows and n columns. Matrices are usually denoted by capital letters. For our applications, we are interested only in

square matrices where m = n; i.e., where the number of rows and columns are the same. A 2× 2 square matrix looks

like

a11 a12
a21 a22



1Matrices can also be constructed with other kinds of numbers for these entries, such as the complex numbers, the quaternions, and elements of
finite fields, to name a few. However, these will not be needed here.

5

where a11, a12, a21, and a22 are numbers. Matrices can be multiplied together. This method of multiplication needs to

be described. First suppose A is a 1× n matrix and B is an n× 1 matrix:

A =

a1 a2 · · · an


, B =




b1
b2
...
bn


 .

We call A a row matrix and B a column matrix. Then the product AB of these two matrices is obtained by multiplying

all corresponding entries, and adding all of these products: AB = a1b1 + a2b2 + · · ·+ anbn. For example,

if A =

2 3 0 4


and B =



−1
5

−2
3


 , AB = 2 · (−1) + 3 · 5 + 0 · (−2) + 4 · 3 = 25.

Now let A be an m×n matrix and B an n× q matrix (Note: we require the number of rows of B and columns of A to

be equal). Then the matrix product AB is the m× q matrix whose (i, j) entry is the matrix product of the ith row of A

and the jth column of B, as defined above. We illustrate with an example. Let C =


1 3
2 0


and D =


−1 4
2 −3


.

Then the product of C and D is the 2× 2 matrix

CD =


1 · (−1) + 3 · 2 1 · 4 + 3 · (−3)
2 · (−1) + 0 · 2 2 · 4 + 0 · (−3)


=


5 −5

−2 8


.

While multiplication of real numbers is commutative, matrix multiplication is not commutative. In general, AB ̸= BA

(although there are exceptions). The reader is encouraged to multiply the above 2 × 2 matrices C and D in the order

DC to verify this.

Of special interest is the n× n matrix In, with entries of 1 down the main diagonal and 0 in all other entries. For

example, we have

I3 =



1 0 0
0 1 0
0 0 1


 .

We call I3 the 3 × 3 identity matrix because if we multiply it by any other 3 × 3 matrix A, we have AI3 = I3A = A

(as the reader should check). In general, we call In the n × n identity matrix. We can think of In as acting like the

number 1, at least when it comes to multiplication of square matrices. If we have two square matrices A and B such

that AB = In, we say that B is the inverse of A (written B = A−1), and that A is the inverse of B (written A = B−1).

6

and b is congruent mod d, we say that b is the modular inverse of a (and vice versa). To illustrate, let’s use the modulus

d = 7 again. Since

3 · 5 = 15 ≡ 1 mod 7,

we say that the modular inverse of 3 is 5 (and vice versa). However, unlike (regular) inverses of nonzero numbers,

an integer does not necessarily have a modular inverse mod d. For example, if our modulus is d = 4, there is no

integer k such that 2 · k ≡ 1 mod 4; that is, 2 has no modular inverse mod 4. This is because just 2 · k is a multiple

of 2, and multiples of 2 can only ever have remainders of 0 or 2 when divided by 4. Nevertheless, there is an easy

way to determine if an integer n has a modular inverse mod d, given by the following result, which is obtained by an

application of the Euclidean Algorithm:

Theorem 2. Let d > 1. An integer k has a modular inverse mod d if and only if gcd(d, k) = 1.

See [7] for details. (Note: two integers d, k satisfying the property gcd(d, k) = 1 are said to be relatively prime, and

we will use this terminology). Modular inverses allow us to write some fractions as integers, mod d. If we take d = 7

for our modulus, then 5 is guaranteed to have an inverse mod 7, since gcd(5, 7) = 1. By an exhaustive search through

the remainders {0, 1, 2, 3, 4, 5, 6} of 7, we can find that 5 · 3 = 15 ≡ 1 mod 7. Hence, the modular inverse of 5 is 3.

This allows us to write 1
5 = 5−1 ≡ 3 mod 7. We will use this property of modular inverses below, when we define the

modular inverse of a matrix.

2.2 Matrices and matrix algebra

Let m and n be positive integers. An m× n matrix is a rectangular array




a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n

...
...

...
...

am1 am2 am3 . . . amn




in which each entry, aij , of the matrix is a real number1 (we also refer to aij as the (i, j) entry). An m× n matrix has

m rows and n columns. Matrices are usually denoted by capital letters. For our applications, we are interested only in

square matrices where m = n; i.e., where the number of rows and columns are the same. A 2× 2 square matrix looks

like

a11 a12
a21 a22



1Matrices can also be constructed with other kinds of numbers for these entries, such as the complex numbers, the quaternions, and elements of
finite fields, to name a few. However, these will not be needed here.

5

68  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

We call A a row matrix and B a column matrix. Then the product AB of these two matrices

is obtained by multiplying all corresponding entries, and adding all of these products:

AB = a1b1 + a2b2 + · · · + anbn. For example,

Now let A be an m × n matrix and B an n × q matrix (Note: we require the number of rows of

B and columns of A to be equal). Then the matrix product AB is the m × q matrix whose (i, j)

entry is the matrix product of the ith row of A and the jth column of B, as defined above. We il-

lustrate with an example. Let

where a11, a12, a21, and a22 are numbers. Matrices can be multiplied together. This method of multiplication needs to

be described. First suppose A is a 1× n matrix and B is an n× 1 matrix:

A =

a1 a2 · · · an


, B =




b1
b2
...
bn


 .

We call A a row matrix and B a column matrix. Then the product AB of these two matrices is obtained by multiplying

all corresponding entries, and adding all of these products: AB = a1b1 + a2b2 + · · ·+ anbn. For example,

if A =

2 3 0 4


and B =



−1
5

−2
3


 , AB = 2 · (−1) + 3 · 5 + 0 · (−2) + 4 · 3 = 25.

Now let A be an m×n matrix and B an n× q matrix (Note: we require the number of rows of B and columns of A to

be equal). Then the matrix product AB is the m× q matrix whose (i, j) entry is the matrix product of the ith row of A

and the jth column of B, as defined above. We illustrate with an example. Let C =


1 3
2 0


and D =


−1 4
2 −3


.

Then the product of C and D is the 2× 2 matrix

CD =


1 · (−1) + 3 · 2 1 · 4 + 3 · (−3)
2 · (−1) + 0 · 2 2 · 4 + 0 · (−3)


=


5 −5

−2 8


.

While multiplication of real numbers is commutative, matrix multiplication is not commutative. In general, AB ̸= BA

(although there are exceptions). The reader is encouraged to multiply the above 2 × 2 matrices C and D in the order

DC to verify this.

Of special interest is the n× n matrix In, with entries of 1 down the main diagonal and 0 in all other entries. For

example, we have

I3 =



1 0 0
0 1 0
0 0 1


 .

We call I3 the 3 × 3 identity matrix because if we multiply it by any other 3 × 3 matrix A, we have AI3 = I3A = A

(as the reader should check). In general, we call In the n × n identity matrix. We can think of In as acting like the

number 1, at least when it comes to multiplication of square matrices. If we have two square matrices A and B such

that AB = In, we say that B is the inverse of A (written B = A−1), and that A is the inverse of B (written A = B−1).

6

 and

where a11, a12, a21, and a22 are numbers. Matrices can be multiplied together. This method of multiplication needs to

be described. First suppose A is a 1× n matrix and B is an n× 1 matrix:

A =

a1 a2 · · · an


, B =




b1
b2
...
bn


 .

We call A a row matrix and B a column matrix. Then the product AB of these two matrices is obtained by multiplying

all corresponding entries, and adding all of these products: AB = a1b1 + a2b2 + · · ·+ anbn. For example,

if A =

2 3 0 4


and B =



−1
5

−2
3


 , AB = 2 · (−1) + 3 · 5 + 0 · (−2) + 4 · 3 = 25.

Now let A be an m×n matrix and B an n× q matrix (Note: we require the number of rows of B and columns of A to

be equal). Then the matrix product AB is the m× q matrix whose (i, j) entry is the matrix product of the ith row of A

and the jth column of B, as defined above. We illustrate with an example. Let C =


1 3
2 0


and D =


−1 4
2 −3


.

Then the product of C and D is the 2× 2 matrix

CD =


1 · (−1) + 3 · 2 1 · 4 + 3 · (−3)
2 · (−1) + 0 · 2 2 · 4 + 0 · (−3)


=


5 −5

−2 8


.

While multiplication of real numbers is commutative, matrix multiplication is not commutative. In general, AB ̸= BA

(although there are exceptions). The reader is encouraged to multiply the above 2 × 2 matrices C and D in the order

DC to verify this.

Of special interest is the n× n matrix In, with entries of 1 down the main diagonal and 0 in all other entries. For

example, we have

I3 =



1 0 0
0 1 0
0 0 1


 .

We call I3 the 3 × 3 identity matrix because if we multiply it by any other 3 × 3 matrix A, we have AI3 = I3A = A

(as the reader should check). In general, we call In the n × n identity matrix. We can think of In as acting like the

number 1, at least when it comes to multiplication of square matrices. If we have two square matrices A and B such

that AB = In, we say that B is the inverse of A (written B = A−1), and that A is the inverse of B (written A = B−1).

6

. Then the product of C and D is the

2 × 2 matrix

While multiplication of real numbers is commutative, matrix multiplication is not commutative. In

general, AB ≠ BA (although there are exceptions). The reader is encouraged to multiply the above

2 × 2 matrices C and D in the order DC to verify this.

Of special interest is the n × n matrix In, with entries of 1 down the main diagonal and 0 in all

other entries. For example, we have

We call I3 the 3 × 3 identity matrix because if we multiply it by any other 3 × 3 matrix A, we have

AI3 = I3A = A (as the reader should check). In general, we call In the n × n identity matrix. We

can think of In as acting like the number 1, at least when it comes to multiplication of square ma-

trices. If we have two square matrices A and B such that AB = In, we say that B is the inverse of

A (written B = A−1), and that A is the inverse of B (written A = B−1). For example, the reader can

verify the following:

So, we can write E = F −1 and F = E−1.

where a11, a12, a21, and a22 are numbers. Matrices can be multiplied together. This method of multiplication needs to

be described. First suppose A is a 1× n matrix and B is an n× 1 matrix:

A =

a1 a2 · · · an


, B =




b1
b2
...
bn


 .

We call A a row matrix and B a column matrix. Then the product AB of these two matrices is obtained by multiplying

all corresponding entries, and adding all of these products: AB = a1b1 + a2b2 + · · ·+ anbn. For example,

if A =

2 3 0 4


and B =



−1
5

−2
3


 , AB = 2 · (−1) + 3 · 5 + 0 · (−2) + 4 · 3 = 25.

Now let A be an m×n matrix and B an n× q matrix (Note: we require the number of rows of B and columns of A to

be equal). Then the matrix product AB is the m× q matrix whose (i, j) entry is the matrix product of the ith row of A

and the jth column of B, as defined above. We illustrate with an example. Let C =


1 3
2 0


and D =


−1 4
2 −3


.

Then the product of C and D is the 2× 2 matrix

CD =


1 · (−1) + 3 · 2 1 · 4 + 3 · (−3)
2 · (−1) + 0 · 2 2 · 4 + 0 · (−3)


=


5 −5

−2 8


.

While multiplication of real numbers is commutative, matrix multiplication is not commutative. In general, AB ̸= BA

(although there are exceptions). The reader is encouraged to multiply the above 2 × 2 matrices C and D in the order

DC to verify this.

Of special interest is the n× n matrix In, with entries of 1 down the main diagonal and 0 in all other entries. For

example, we have

I3 =



1 0 0
0 1 0
0 0 1


 .

We call I3 the 3 × 3 identity matrix because if we multiply it by any other 3 × 3 matrix A, we have AI3 = I3A = A

(as the reader should check). In general, we call In the n × n identity matrix. We can think of In as acting like the

number 1, at least when it comes to multiplication of square matrices. If we have two square matrices A and B such

that AB = In, we say that B is the inverse of A (written B = A−1), and that A is the inverse of B (written A = B−1).

6

where a11, a12, a21, and a22 are numbers. Matrices can be multiplied together. This method of multiplication needs to

be described. First suppose A is a 1× n matrix and B is an n× 1 matrix:

A =

a1 a2 · · · an


, B =




b1
b2
...
bn


 .

We call A a row matrix and B a column matrix. Then the product AB of these two matrices is obtained by multiplying

all corresponding entries, and adding all of these products: AB = a1b1 + a2b2 + · · ·+ anbn. For example,

if A =

2 3 0 4


and B =



−1
5

−2
3


 , AB = 2 · (−1) + 3 · 5 + 0 · (−2) + 4 · 3 = 25.

Now let A be an m×n matrix and B an n× q matrix (Note: we require the number of rows of B and columns of A to

be equal). Then the matrix product AB is the m× q matrix whose (i, j) entry is the matrix product of the ith row of A

and the jth column of B, as defined above. We illustrate with an example. Let C =


1 3
2 0


and D =


−1 4
2 −3


.

Then the product of C and D is the 2× 2 matrix

CD =


1 · (−1) + 3 · 2 1 · 4 + 3 · (−3)
2 · (−1) + 0 · 2 2 · 4 + 0 · (−3)


=


5 −5

−2 8


.

While multiplication of real numbers is commutative, matrix multiplication is not commutative. In general, AB ̸= BA

(although there are exceptions). The reader is encouraged to multiply the above 2 × 2 matrices C and D in the order

DC to verify this.

Of special interest is the n× n matrix In, with entries of 1 down the main diagonal and 0 in all other entries. For

example, we have

I3 =



1 0 0
0 1 0
0 0 1


 .

We call I3 the 3 × 3 identity matrix because if we multiply it by any other 3 × 3 matrix A, we have AI3 = I3A = A

(as the reader should check). In general, we call In the n × n identity matrix. We can think of In as acting like the

number 1, at least when it comes to multiplication of square matrices. If we have two square matrices A and B such

that AB = In, we say that B is the inverse of A (written B = A−1), and that A is the inverse of B (written A = B−1).

6

where a11, a12, a21, and a22 are numbers. Matrices can be multiplied together. This method of multiplication needs to

be described. First suppose A is a 1× n matrix and B is an n× 1 matrix:

A =

a1 a2 · · · an


, B =




b1
b2
...
bn


 .

We call A a row matrix and B a column matrix. Then the product AB of these two matrices is obtained by multiplying

all corresponding entries, and adding all of these products: AB = a1b1 + a2b2 + · · ·+ anbn. For example,

if A =

2 3 0 4


and B =



−1
5

−2
3


 , AB = 2 · (−1) + 3 · 5 + 0 · (−2) + 4 · 3 = 25.

Now let A be an m×n matrix and B an n× q matrix (Note: we require the number of rows of B and columns of A to

be equal). Then the matrix product AB is the m× q matrix whose (i, j) entry is the matrix product of the ith row of A

and the jth column of B, as defined above. We illustrate with an example. Let C =


1 3
2 0


and D =


−1 4
2 −3


.

Then the product of C and D is the 2× 2 matrix

CD =


1 · (−1) + 3 · 2 1 · 4 + 3 · (−3)
2 · (−1) + 0 · 2 2 · 4 + 0 · (−3)


=


5 −5

−2 8


.

While multiplication of real numbers is commutative, matrix multiplication is not commutative. In general, AB ̸= BA

(although there are exceptions). The reader is encouraged to multiply the above 2 × 2 matrices C and D in the order

DC to verify this.

Of special interest is the n× n matrix In, with entries of 1 down the main diagonal and 0 in all other entries. For

example, we have

I3 =



1 0 0
0 1 0
0 0 1


 .

We call I3 the 3 × 3 identity matrix because if we multiply it by any other 3 × 3 matrix A, we have AI3 = I3A = A

(as the reader should check). In general, we call In the n × n identity matrix. We can think of In as acting like the

number 1, at least when it comes to multiplication of square matrices. If we have two square matrices A and B such

that AB = In, we say that B is the inverse of A (written B = A−1), and that A is the inverse of B (written A = B−1).

6

For example, the reader can verify the following:

for E =

[
5 2

−7 −3

]
and F =

[
3 2

−7 −5

]
, we have EF =

[
1 0
0 1

]
= FE.

So, we can write E = F−1 and F = E−1.

While any nonzero real number has a multiplicative inverse (for example, 2 · (1/2) = 1), many nonzero square

matrices do not have an inverse. In this case, we say that a matrix is not invertible. For example, we leave it to the

reader to verify that any 2× 2 matrix with a single row of all 0’s cannot have an inverse. An invertible matrix, on the

other hand, is a square matrix which does have an inverse.

For example, we can see that the matrices C and D in the example above are both invertible matrices. With these

definitions and properties at hand, we are faced with two important questions: how do we know which square matrices

are invertible, and, if a matrix is invertible, how do we find an inverse for it? We give a partial answer to both questions

in the following section.

2.3 The determinant of a matrix
For any 2× 2 matrix A, we will compute a number called its determinant, denoted det(A):

if A =

[
a b
c d

]
, det(A) := ad− bc.

That’s easy enough to calculate, but what’s the use in doing so? For our purposes, the most important property of the

determinant is the following theorem.

Theorem 3. Let A =

[
q r
s t

]
. Then

1) A is invertible if and only if det(A) ̸= 0, and

2) if A is invertible, A−1 = 1
det(A)

[
t −r

−s q

]
.

The theorem above provides a way to find the inverse of square matrices of size 2. What about square matrices of size

> 2? These matrices also have a determinant, and part 1) of the above theorem remains true. Calculating the inverse

of such a matrix becomes computationally lengthy as n gets larger and larger. The reader is referred to any standard

reference on linear algebra, such as [5], for a comprehensive treatment of matrix inverses and determinants, including

standard algorithms for finding the determinant of any n× n matrix.

7

Exploring the Hill Cipher through Linear Algebra and Python  69

While any nonzero real number has a multiplicative inverse (for example, 2 · (1/2) = 1), many

nonzero square matrices do not have an inverse. In this case, we say that a matrix is not invertible. For

example, we leave it to the reader to verify that any 2 × 2 matrix with a single row of all 0’s can-
not have an inverse. An invertible matrix, on the other hand, is a square matrix which does have an

inverse.

For example, we can see that the matrices E and F in the example above are both invertible

matrices. With these definitions and properties at hand, we are faced with two important questions:

how do we know which square matrices are invertible, and, if a matrix is invertible, how do we find

an inverse for it? We give a partial answer to both questions in the following section.

2.3 The Determinant of a Matrix
For any 2 × 2 matrix A, we will compute a number called its determinant, denoted det(A):

That’s easy enough to calculate, but what’s the use in doing so? For our purposes, the most import-

ant property of the determinant is the following theorem.

Theorem 3. Let

For example, the reader can verify the following:

for E =

[
5 2

−7 −3

]
and F =

[
3 2

−7 −5

]
, we have EF =

[
1 0
0 1

]
= FE.

So, we can write E = F−1 and F = E−1.

While any nonzero real number has a multiplicative inverse (for example, 2 · (1/2) = 1), many nonzero square

matrices do not have an inverse. In this case, we say that a matrix is not invertible. For example, we leave it to the

reader to verify that any 2× 2 matrix with a single row of all 0’s cannot have an inverse. An invertible matrix, on the

other hand, is a square matrix which does have an inverse.

For example, we can see that the matrices C and D in the example above are both invertible matrices. With these

definitions and properties at hand, we are faced with two important questions: how do we know which square matrices

are invertible, and, if a matrix is invertible, how do we find an inverse for it? We give a partial answer to both questions

in the following section.

2.3 The determinant of a matrix
For any 2× 2 matrix A, we will compute a number called its determinant, denoted det(A):

if A =

[
a b
c d

]
, det(A) := ad− bc.

That’s easy enough to calculate, but what’s the use in doing so? For our purposes, the most important property of the

determinant is the following theorem.

Theorem 3. Let A =

[
q r
s t

]
. Then

1) A is invertible if and only if det(A) ̸= 0, and

2) if A is invertible, A−1 = 1
det(A)

[
t −r

−s q

]
.

The theorem above provides a way to find the inverse of square matrices of size 2. What about square matrices of size

> 2? These matrices also have a determinant, and part 1) of the above theorem remains true. Calculating the inverse

of such a matrix becomes computationally lengthy as n gets larger and larger. The reader is referred to any standard

reference on linear algebra, such as [5], for a comprehensive treatment of matrix inverses and determinants, including

standard algorithms for finding the determinant of any n× n matrix.

7

. Then

	1) A is invertible if and only if det(A) ≠ 0, and

2) if A is invertible,

For example, the reader can verify the following:

for E =

[
5 2

−7 −3

]
and F =

[
3 2

−7 −5

]
, we have EF =

[
1 0
0 1

]
= FE.

So, we can write E = F−1 and F = E−1.

While any nonzero real number has a multiplicative inverse (for example, 2 · (1/2) = 1), many nonzero square

matrices do not have an inverse. In this case, we say that a matrix is not invertible. For example, we leave it to the

reader to verify that any 2× 2 matrix with a single row of all 0’s cannot have an inverse. An invertible matrix, on the

other hand, is a square matrix which does have an inverse.

For example, we can see that the matrices C and D in the example above are both invertible matrices. With these

definitions and properties at hand, we are faced with two important questions: how do we know which square matrices

are invertible, and, if a matrix is invertible, how do we find an inverse for it? We give a partial answer to both questions

in the following section.

2.3 The determinant of a matrix
For any 2× 2 matrix A, we will compute a number called its determinant, denoted det(A):

if A =

[
a b
c d

]
, det(A) := ad− bc.

That’s easy enough to calculate, but what’s the use in doing so? For our purposes, the most important property of the

determinant is the following theorem.

Theorem 3. Let A =

[
q r
s t

]
. Then

1) A is invertible if and only if det(A) ̸= 0, and

2) if A is invertible, A−1 = 1
det(A)

[
t −r

−s q

]
.

The theorem above provides a way to find the inverse of square matrices of size 2. What about square matrices of size

> 2? These matrices also have a determinant, and part 1) of the above theorem remains true. Calculating the inverse

of such a matrix becomes computationally lengthy as n gets larger and larger. The reader is referred to any standard

reference on linear algebra, such as [5], for a comprehensive treatment of matrix inverses and determinants, including

standard algorithms for finding the determinant of any n× n matrix.

7

The theorem above provides a way to find the inverse of square matrices of size 2. What about

square matrices of size > 2? These matrices also have a determinant, and part 1) of the above the-

orem remains true. Calculating the inverse of such a matrix becomes computationally lengthy as

n gets larger and larger. The reader is referred to any standard reference on linear algebra, such as

[5], for a comprehensive treatment of matrix inverses and determinants, including standard algo-

rithms for finding the determinant of any n × n matrix.

2.4 The Modular Inverse of a Matrix
We combine the ideas of the preceding sections to define modular equivalence and the modular in-

verse of a matrix. From this point onward, we are interested mainly in matrices with integer entries,

For example, the reader can verify the following:

for E =

[
5 2

−7 −3

]
and F =

[
3 2

−7 −5

]
, we have EF =

[
1 0
0 1

]
= FE.

So, we can write E = F−1 and F = E−1.

While any nonzero real number has a multiplicative inverse (for example, 2 · (1/2) = 1), many nonzero square

matrices do not have an inverse. In this case, we say that a matrix is not invertible. For example, we leave it to the

reader to verify that any 2× 2 matrix with a single row of all 0’s cannot have an inverse. An invertible matrix, on the

other hand, is a square matrix which does have an inverse.

For example, we can see that the matrices C and D in the example above are both invertible matrices. With these

definitions and properties at hand, we are faced with two important questions: how do we know which square matrices

are invertible, and, if a matrix is invertible, how do we find an inverse for it? We give a partial answer to both questions

in the following section.

2.3 The determinant of a matrix
For any 2× 2 matrix A, we will compute a number called its determinant, denoted det(A):

if A =

[
a b
c d

]
, det(A) := ad− bc.

That’s easy enough to calculate, but what’s the use in doing so? For our purposes, the most important property of the

determinant is the following theorem.

Theorem 3. Let A =

[
q r
s t

]
. Then

1) A is invertible if and only if det(A) ̸= 0, and

2) if A is invertible, A−1 = 1
det(A)

[
t −r

−s q

]
.

The theorem above provides a way to find the inverse of square matrices of size 2. What about square matrices of size

> 2? These matrices also have a determinant, and part 1) of the above theorem remains true. Calculating the inverse

of such a matrix becomes computationally lengthy as n gets larger and larger. The reader is referred to any standard

reference on linear algebra, such as [5], for a comprehensive treatment of matrix inverses and determinants, including

standard algorithms for finding the determinant of any n× n matrix.

7

70  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

and we will call such a matrix an integer matrix. For this section, we fix a modulus d > 1. We can

carry out matrix multiplication and find matrix inverses, working entirely with the integers k rang-

ing from 0 to d − 1. If A and B are two matrices, we will write A ≡ B mod d if the corresponding

entries of A and B are congruent mod d. For example, if d = 7, then

We say that an n × n integer matrix A has a modular inverse mod d if there is an integer matrix

B such that AB ≡ In mod d. If so, we say that A is invertible mod d. It is possible for an n × n integer

matrix to have an inverse, but fail to be invertible mod d – as this example shows: let d = 4 and

2.4 The modular inverse of a matrix

We combine the ideas of the preceding sections to define modular equivalence and the modular inverse of a matrix.

From this point onward, we are interested mainly in matrices with integer entries, and we will call such a matrix an

integer matrix. For this section, we fix a modulus d > 1. We can carry out matrix multiplication and find matrix

inverses, working entirely with the integers k ranging from 0 to d − 1. If A and B are two matrices, we will write

A ≡ B mod d if the corresponding entries of A and B are congruent mod d. For example, if d = 7, then



−1 5 9
0 7 −21
8 22 50


 ≡



6 5 2
0 0 0
1 1 1


 mod 7.

We say that an n × n integer matrix A has a modular inverse mod d if there is an integer matrix B such that AB ≡

In mod d. If so, we say that A is invertible mod d. It is possible for an n × n integer matrix to have an inverse, but

fail to be invertible mod d - as this example shows: let d = 4 and A =


2 2
2 4


. Then by Theorem 3, A is invertible,

because det(A) = 2 · 4− 2 · 2 ̸= 0. We cannot produce any integer matrix B satisfying AB ≡ I2 mod 4, because the

entries of any product AB will always be even numbers. So, the diagonal entries will never be congruent to 1 mod 4.

Fortunately, the criterion that tells us when a matrix is invertible mod d is known:

Theorem 4. Let A be an n× n matrix. Then A is invertible mod d if and only if gcd(d, det(A)) = 1.

Proof. We give a partial proof for the case n = 2. Let A =


q r
s t


. For brevity we will write x ≡ y if x ≡ y mod d.

Assume gcd(d, det(A)) = 1. By Theorem 2, det(A) is invertible mod d. Then we let

e ≡ det(A)−1 · t, f ≡ det(A)−1 · (−r), g ≡ det(A)−1 · (−s), and h ≡ det(A)−1 · q.

Now if we let C =


e f
g h


, a verification (using Theorem 1) shows that AC ≡ I2 ≡ CA mod d. The other direction,

proving that gcd(d, det(A)) = 1 if A has a modular inverse, is left to the reader.

Here is an example: let d = 5, and A =


3 1
3 4


. Then det(A) = 3 · 4− 1 · 3 = 9. Since det(A) ̸= 0, A has an

inverse, given by

A−1 =
1

9


4 −1

−3 3


= 9−1


4 −1

−3 3


=


4 · 9−1 (−1) · 9−1

(−3) · 9−1 3 · 9−1


.

Since 5 and 9 are relatively prime, A also has a modular inverse, which can be obtained by reducing all entries of A−1

mod 5. To do this, we use the fact that 4 is the modular inverse of 9 mod 5, because 9 · 4 = 36 ≡ 1 mod 5.

8

 Then by Theorem 3, A is invertible, because det(A) = 2 · 4 − 2 · 2 ≠ 0. We cannot

produce any integer matrix B satisfying AB ≡ I2 mod 4, because the entries of any product AB will

always be even numbers. So, the diagonal entries will never be congruent to 1 mod 4. Fortunately,

the criterion that tells us when a matrix is invertible mod d is known:

Theorem 4. Let A be an n × n matrix. Then A is invertible mod d if and only if gcd(d, det(A)) = 1.

Proof. We give a partial proof for the case n = 2. Let

2.4 The modular inverse of a matrix

We combine the ideas of the preceding sections to define modular equivalence and the modular inverse of a matrix.

From this point onward, we are interested mainly in matrices with integer entries, and we will call such a matrix an

integer matrix. For this section, we fix a modulus d > 1. We can carry out matrix multiplication and find matrix

inverses, working entirely with the integers k ranging from 0 to d − 1. If A and B are two matrices, we will write

A ≡ B mod d if the corresponding entries of A and B are congruent mod d. For example, if d = 7, then



−1 5 9
0 7 −21
8 22 50


 ≡



6 5 2
0 0 0
1 1 1


 mod 7.

We say that an n × n integer matrix A has a modular inverse mod d if there is an integer matrix B such that AB ≡

In mod d. If so, we say that A is invertible mod d. It is possible for an n × n integer matrix to have an inverse, but

fail to be invertible mod d - as this example shows: let d = 4 and A =


2 2
2 4


. Then by Theorem 3, A is invertible,

because det(A) = 2 · 4− 2 · 2 ̸= 0. We cannot produce any integer matrix B satisfying AB ≡ I2 mod 4, because the

entries of any product AB will always be even numbers. So, the diagonal entries will never be congruent to 1 mod 4.

Fortunately, the criterion that tells us when a matrix is invertible mod d is known:

Theorem 4. Let A be an n× n matrix. Then A is invertible mod d if and only if gcd(d, det(A)) = 1.

Proof. We give a partial proof for the case n = 2. Let A =


q r
s t


. For brevity we will write x ≡ y if x ≡ y mod d.

Assume gcd(d, det(A)) = 1. By Theorem 2, det(A) is invertible mod d. Then we let

e ≡ det(A)−1 · t, f ≡ det(A)−1 · (−r), g ≡ det(A)−1 · (−s), and h ≡ det(A)−1 · q.

Now if we let C =


e f
g h


, a verification (using Theorem 1) shows that AC ≡ I2 ≡ CA mod d. The other direction,

proving that gcd(d, det(A)) = 1 if A has a modular inverse, is left to the reader.

Here is an example: let d = 5, and A =


3 1
3 4


. Then det(A) = 3 · 4− 1 · 3 = 9. Since det(A) ̸= 0, A has an

inverse, given by

A−1 =
1

9


4 −1

−3 3


= 9−1


4 −1

−3 3


=


4 · 9−1 (−1) · 9−1

(−3) · 9−1 3 · 9−1


.

Since 5 and 9 are relatively prime, A also has a modular inverse, which can be obtained by reducing all entries of A−1

mod 5. To do this, we use the fact that 4 is the modular inverse of 9 mod 5, because 9 · 4 = 36 ≡ 1 mod 5.

8

. For brevity we will write x ≡ y if

x ≡ y mod d. Assume gcd(d, det(A)) = 1. By Theorem 2, det(A) is invertible mod d. Then we let

Now if we let

2.4 The modular inverse of a matrix

We combine the ideas of the preceding sections to define modular equivalence and the modular inverse of a matrix.

From this point onward, we are interested mainly in matrices with integer entries, and we will call such a matrix an

integer matrix. For this section, we fix a modulus d > 1. We can carry out matrix multiplication and find matrix

inverses, working entirely with the integers k ranging from 0 to d − 1. If A and B are two matrices, we will write

A ≡ B mod d if the corresponding entries of A and B are congruent mod d. For example, if d = 7, then



−1 5 9
0 7 −21
8 22 50


 ≡



6 5 2
0 0 0
1 1 1


 mod 7.

We say that an n × n integer matrix A has a modular inverse mod d if there is an integer matrix B such that AB ≡

In mod d. If so, we say that A is invertible mod d. It is possible for an n × n integer matrix to have an inverse, but

fail to be invertible mod d - as this example shows: let d = 4 and A =


2 2
2 4


. Then by Theorem 3, A is invertible,

because det(A) = 2 · 4− 2 · 2 ̸= 0. We cannot produce any integer matrix B satisfying AB ≡ I2 mod 4, because the

entries of any product AB will always be even numbers. So, the diagonal entries will never be congruent to 1 mod 4.

Fortunately, the criterion that tells us when a matrix is invertible mod d is known:

Theorem 4. Let A be an n× n matrix. Then A is invertible mod d if and only if gcd(d, det(A)) = 1.

Proof. We give a partial proof for the case n = 2. Let A =


q r
s t


. For brevity we will write x ≡ y if x ≡ y mod d.

Assume gcd(d, det(A)) = 1. By Theorem 2, det(A) is invertible mod d. Then we let

e ≡ det(A)−1 · t, f ≡ det(A)−1 · (−r), g ≡ det(A)−1 · (−s), and h ≡ det(A)−1 · q.

Now if we let C =


e f
g h


, a verification (using Theorem 1) shows that AC ≡ I2 ≡ CA mod d. The other direction,

proving that gcd(d, det(A)) = 1 if A has a modular inverse, is left to the reader.

Here is an example: let d = 5, and A =


3 1
3 4


. Then det(A) = 3 · 4− 1 · 3 = 9. Since det(A) ̸= 0, A has an

inverse, given by

A−1 =
1

9


4 −1

−3 3


= 9−1


4 −1

−3 3


=


4 · 9−1 (−1) · 9−1

(−3) · 9−1 3 · 9−1


.

Since 5 and 9 are relatively prime, A also has a modular inverse, which can be obtained by reducing all entries of A−1

mod 5. To do this, we use the fact that 4 is the modular inverse of 9 mod 5, because 9 · 4 = 36 ≡ 1 mod 5.

8

, a verification (using Theorem 1) shows that AC ≡ I2 ≡ CA mod d. The

other direction, proving that gcd(d, det(A)) = 1 if A has a modular inverse, is left to the reader.

Here is an example: let d = 5, and

2.4 The modular inverse of a matrix

We combine the ideas of the preceding sections to define modular equivalence and the modular inverse of a matrix.

From this point onward, we are interested mainly in matrices with integer entries, and we will call such a matrix an

integer matrix. For this section, we fix a modulus d > 1. We can carry out matrix multiplication and find matrix

inverses, working entirely with the integers k ranging from 0 to d − 1. If A and B are two matrices, we will write

A ≡ B mod d if the corresponding entries of A and B are congruent mod d. For example, if d = 7, then



−1 5 9
0 7 −21
8 22 50


 ≡



6 5 2
0 0 0
1 1 1


 mod 7.

We say that an n × n integer matrix A has a modular inverse mod d if there is an integer matrix B such that AB ≡

In mod d. If so, we say that A is invertible mod d. It is possible for an n × n integer matrix to have an inverse, but

fail to be invertible mod d - as this example shows: let d = 4 and A =


2 2
2 4


. Then by Theorem 3, A is invertible,

because det(A) = 2 · 4− 2 · 2 ̸= 0. We cannot produce any integer matrix B satisfying AB ≡ I2 mod 4, because the

entries of any product AB will always be even numbers. So, the diagonal entries will never be congruent to 1 mod 4.

Fortunately, the criterion that tells us when a matrix is invertible mod d is known:

Theorem 4. Let A be an n× n matrix. Then A is invertible mod d if and only if gcd(d, det(A)) = 1.

Proof. We give a partial proof for the case n = 2. Let A =


q r
s t


. For brevity we will write x ≡ y if x ≡ y mod d.

Assume gcd(d, det(A)) = 1. By Theorem 2, det(A) is invertible mod d. Then we let

e ≡ det(A)−1 · t, f ≡ det(A)−1 · (−r), g ≡ det(A)−1 · (−s), and h ≡ det(A)−1 · q.

Now if we let C =


e f
g h


, a verification (using Theorem 1) shows that AC ≡ I2 ≡ CA mod d. The other direction,

proving that gcd(d, det(A)) = 1 if A has a modular inverse, is left to the reader.

Here is an example: let d = 5, and A =


3 1
3 4


. Then det(A) = 3 · 4− 1 · 3 = 9. Since det(A) ̸= 0, A has an

inverse, given by

A−1 =
1

9


4 −1

−3 3


= 9−1


4 −1

−3 3


=


4 · 9−1 (−1) · 9−1

(−3) · 9−1 3 · 9−1


.

Since 5 and 9 are relatively prime, A also has a modular inverse, which can be obtained by reducing all entries of A−1

mod 5. To do this, we use the fact that 4 is the modular inverse of 9 mod 5, because 9 · 4 = 36 ≡ 1 mod 5.

8

. Then det(A) = 3 · 4 − 1 · 3 = 9. Since

det(A) ≠ 0, A has an inverse, given by

Since 5 and 9 are relatively prime, A also has a modular inverse, which can be obtained by reducing

2.4 The modular inverse of a matrix

We combine the ideas of the preceding sections to define modular equivalence and the modular inverse of a matrix.

From this point onward, we are interested mainly in matrices with integer entries, and we will call such a matrix an

integer matrix. For this section, we fix a modulus d > 1. We can carry out matrix multiplication and find matrix

inverses, working entirely with the integers k ranging from 0 to d − 1. If A and B are two matrices, we will write

A ≡ B mod d if the corresponding entries of A and B are congruent mod d. For example, if d = 7, then



−1 5 9
0 7 −21
8 22 50


 ≡



6 5 2
0 0 0
1 1 1


 mod 7.

We say that an n × n integer matrix A has a modular inverse mod d if there is an integer matrix B such that AB ≡

In mod d. If so, we say that A is invertible mod d. It is possible for an n × n integer matrix to have an inverse, but

fail to be invertible mod d - as this example shows: let d = 4 and A =


2 2
2 4


. Then by Theorem 3, A is invertible,

because det(A) = 2 · 4− 2 · 2 ̸= 0. We cannot produce any integer matrix B satisfying AB ≡ I2 mod 4, because the

entries of any product AB will always be even numbers. So, the diagonal entries will never be congruent to 1 mod 4.

Fortunately, the criterion that tells us when a matrix is invertible mod d is known:

Theorem 4. Let A be an n× n matrix. Then A is invertible mod d if and only if gcd(d, det(A)) = 1.

Proof. We give a partial proof for the case n = 2. Let A =


q r
s t


. For brevity we will write x ≡ y if x ≡ y mod d.

Assume gcd(d, det(A)) = 1. By Theorem 2, det(A) is invertible mod d. Then we let

e ≡ det(A)−1 · t, f ≡ det(A)−1 · (−r), g ≡ det(A)−1 · (−s), and h ≡ det(A)−1 · q.

Now if we let C =


e f
g h


, a verification (using Theorem 1) shows that AC ≡ I2 ≡ CA mod d. The other direction,

proving that gcd(d, det(A)) = 1 if A has a modular inverse, is left to the reader.

Here is an example: let d = 5, and A =


3 1
3 4


. Then det(A) = 3 · 4− 1 · 3 = 9. Since det(A) ̸= 0, A has an

inverse, given by

A−1 =
1

9


4 −1

−3 3


= 9−1


4 −1

−3 3


=


4 · 9−1 (−1) · 9−1

(−3) · 9−1 3 · 9−1


.

Since 5 and 9 are relatively prime, A also has a modular inverse, which can be obtained by reducing all entries of A−1

mod 5. To do this, we use the fact that 4 is the modular inverse of 9 mod 5, because 9 · 4 = 36 ≡ 1 mod 5.

8

2.4 The modular inverse of a matrix

We combine the ideas of the preceding sections to define modular equivalence and the modular inverse of a matrix.

From this point onward, we are interested mainly in matrices with integer entries, and we will call such a matrix an

integer matrix. For this section, we fix a modulus d > 1. We can carry out matrix multiplication and find matrix

inverses, working entirely with the integers k ranging from 0 to d − 1. If A and B are two matrices, we will write

A ≡ B mod d if the corresponding entries of A and B are congruent mod d. For example, if d = 7, then



−1 5 9
0 7 −21
8 22 50


 ≡



6 5 2
0 0 0
1 1 1


 mod 7.

We say that an n × n integer matrix A has a modular inverse mod d if there is an integer matrix B such that AB ≡

In mod d. If so, we say that A is invertible mod d. It is possible for an n × n integer matrix to have an inverse, but

fail to be invertible mod d - as this example shows: let d = 4 and A =


2 2
2 4


. Then by Theorem 3, A is invertible,

because det(A) = 2 · 4− 2 · 2 ̸= 0. We cannot produce any integer matrix B satisfying AB ≡ I2 mod 4, because the

entries of any product AB will always be even numbers. So, the diagonal entries will never be congruent to 1 mod 4.

Fortunately, the criterion that tells us when a matrix is invertible mod d is known:

Theorem 4. Let A be an n× n matrix. Then A is invertible mod d if and only if gcd(d, det(A)) = 1.

Proof. We give a partial proof for the case n = 2. Let A =


q r
s t


. For brevity we will write x ≡ y if x ≡ y mod d.

Assume gcd(d, det(A)) = 1. By Theorem 2, det(A) is invertible mod d. Then we let

e ≡ det(A)−1 · t, f ≡ det(A)−1 · (−r), g ≡ det(A)−1 · (−s), and h ≡ det(A)−1 · q.

Now if we let C =


e f
g h


, a verification (using Theorem 1) shows that AC ≡ I2 ≡ CA mod d. The other direction,

proving that gcd(d, det(A)) = 1 if A has a modular inverse, is left to the reader.

Here is an example: let d = 5, and A =


3 1
3 4


. Then det(A) = 3 · 4− 1 · 3 = 9. Since det(A) ̸= 0, A has an

inverse, given by

A−1 =
1

9


4 −1

−3 3


= 9−1


4 −1

−3 3


=


4 · 9−1 (−1) · 9−1

(−3) · 9−1 3 · 9−1


.

Since 5 and 9 are relatively prime, A also has a modular inverse, which can be obtained by reducing all entries of A−1

mod 5. To do this, we use the fact that 4 is the modular inverse of 9 mod 5, because 9 · 4 = 36 ≡ 1 mod 5.

8

2.4 The modular inverse of a matrix

We combine the ideas of the preceding sections to define modular equivalence and the modular inverse of a matrix.

From this point onward, we are interested mainly in matrices with integer entries, and we will call such a matrix an

integer matrix. For this section, we fix a modulus d > 1. We can carry out matrix multiplication and find matrix

inverses, working entirely with the integers k ranging from 0 to d − 1. If A and B are two matrices, we will write

A ≡ B mod d if the corresponding entries of A and B are congruent mod d. For example, if d = 7, then



−1 5 9
0 7 −21
8 22 50


 ≡



6 5 2
0 0 0
1 1 1


 mod 7.

We say that an n × n integer matrix A has a modular inverse mod d if there is an integer matrix B such that AB ≡

In mod d. If so, we say that A is invertible mod d. It is possible for an n × n integer matrix to have an inverse, but

fail to be invertible mod d - as this example shows: let d = 4 and A =


2 2
2 4


. Then by Theorem 3, A is invertible,

because det(A) = 2 · 4− 2 · 2 ̸= 0. We cannot produce any integer matrix B satisfying AB ≡ I2 mod 4, because the

entries of any product AB will always be even numbers. So, the diagonal entries will never be congruent to 1 mod 4.

Fortunately, the criterion that tells us when a matrix is invertible mod d is known:

Theorem 4. Let A be an n× n matrix. Then A is invertible mod d if and only if gcd(d, det(A)) = 1.

Proof. We give a partial proof for the case n = 2. Let A =


q r
s t


. For brevity we will write x ≡ y if x ≡ y mod d.

Assume gcd(d, det(A)) = 1. By Theorem 2, det(A) is invertible mod d. Then we let

e ≡ det(A)−1 · t, f ≡ det(A)−1 · (−r), g ≡ det(A)−1 · (−s), and h ≡ det(A)−1 · q.

Now if we let C =


e f
g h


, a verification (using Theorem 1) shows that AC ≡ I2 ≡ CA mod d. The other direction,

proving that gcd(d, det(A)) = 1 if A has a modular inverse, is left to the reader.

Here is an example: let d = 5, and A =


3 1
3 4


. Then det(A) = 3 · 4− 1 · 3 = 9. Since det(A) ̸= 0, A has an

inverse, given by

A−1 =
1

9


4 −1

−3 3


= 9−1


4 −1

−3 3


=


4 · 9−1 (−1) · 9−1

(−3) · 9−1 3 · 9−1


.

Since 5 and 9 are relatively prime, A also has a modular inverse, which can be obtained by reducing all entries of A−1

mod 5. To do this, we use the fact that 4 is the modular inverse of 9 mod 5, because 9 · 4 = 36 ≡ 1 mod 5.

8

□

Exploring the Hill Cipher through Linear Algebra and Python  71

all entries of A−1 mod 5. To do this, we use the fact that 4 is the modular inverse of 9 mod 5, because

9 · 4 = 36 ≡ 1 mod 5. Therefore, we can write 9−1 ≡ 4 mod 5, and we have

Hence, a modular inverse for A is

Therefore, we can write 9−1 ≡ 4 mod 5, and we have

A−1 =

[
4 · 9−1 (−1) · 9−1

(−3) · 9−1 3 · 9−1

]
≡

[
4 · 4 4 · 4
2 · 4 3 · 4

]
=

[
16 16
8 12

]
≡

[
1 1
3 2

]
mod 5.

Hence, a modular inverse for A is C =

[
1 1
3 2

]
. The reader should check that

[
3 1
3 4

]
·
[
1 1
3 2

]
≡

[
1 0
0 1

]
mod 5 .

For our applications to the Hill cipher, here is the important property of matrix A with a modular inverse. The proof

follows from the definition of the modular inverse.

Theorem 5. Let A be an n× n with gcd(d, det(A)) = 1, and let B be its modular inverse mod d. Let u be an n× 1

column matrix. Then u ≡ BAu mod d.

3 Hill cipher implementation with modular arithmetic and matrix algebra

With the mathematical foundations of modular arithmetic and matrix algebra in place, we are ready to describe the

implementation of the Hill cipher. We will see that the Hill cipher is a block cipher: after a plaintext message is

converted into a sequence of integers (from 0 to 25), this sequence is partitioned into blocks of predetermined length

and these blocks are encrypted one at a time.

We begin the process of encryption by choosing a block size n and then a key. Recall that the key for the Caesar

cipher consists of a single integer which we used to ‘shift’ our message. For the Hill cipher, our key will be an n × n

matrix which is invertible mod 26. From now on, we fix our modulus to be 26 because this is the number of letters in

the English alphabet. We require the condition of invertibility so that our encrypted message can be decrypted later.

We will soon see why and how this works.

3.1 Setting up the plaintext

The next step is to convert the letters of our plaintext message to their corresponding values as shown in Table 1 below,

where a corresponds to 0, b to 1, and so on, up to z, which corresponds to 25.

a b c d e f g h i j k l m
0 1 2 3 4 5 6 7 8 9 10 11 12

n o p q r s t u v w x y z
13 14 15 16 17 18 19 20 21 22 23 24 25

Table 1: English alphabet assigned to numeric values

Then this sequence of integers is blocked into column matrices with a row size that matches the size of the encryption

matrix key. For example, if we choose a block size of 4, our plaintext message will be converted into a sequence of

9

. One can check that

Therefore, we can write 9−1 ≡ 4 mod 5, and we have

A−1 =

[
4 · 9−1 (−1) · 9−1

(−3) · 9−1 3 · 9−1

]
≡

[
4 · 4 4 · 4
2 · 4 3 · 4

]
=

[
16 16
8 12

]
≡

[
1 1
3 2

]
mod 5.

Hence, a modular inverse for A is C =

[
1 1
3 2

]
. The reader should check that

[
3 1
3 4

]
·
[
1 1
3 2

]
≡

[
1 0
0 1

]
mod 5 .

For our applications to the Hill cipher, here is the important property of matrix A with a modular inverse. The proof

follows from the definition of the modular inverse.

Theorem 5. Let A be an n× n with gcd(d, det(A)) = 1, and let B be its modular inverse mod d. Let u be an n× 1

column matrix. Then u ≡ BAu mod d.

3 Hill cipher implementation with modular arithmetic and matrix algebra

With the mathematical foundations of modular arithmetic and matrix algebra in place, we are ready to describe the

implementation of the Hill cipher. We will see that the Hill cipher is a block cipher: after a plaintext message is

converted into a sequence of integers (from 0 to 25), this sequence is partitioned into blocks of predetermined length

and these blocks are encrypted one at a time.

We begin the process of encryption by choosing a block size n and then a key. Recall that the key for the Caesar

cipher consists of a single integer which we used to ‘shift’ our message. For the Hill cipher, our key will be an n × n

matrix which is invertible mod 26. From now on, we fix our modulus to be 26 because this is the number of letters in

the English alphabet. We require the condition of invertibility so that our encrypted message can be decrypted later.

We will soon see why and how this works.

3.1 Setting up the plaintext

The next step is to convert the letters of our plaintext message to their corresponding values as shown in Table 1 below,

where a corresponds to 0, b to 1, and so on, up to z, which corresponds to 25.

a b c d e f g h i j k l m
0 1 2 3 4 5 6 7 8 9 10 11 12

n o p q r s t u v w x y z
13 14 15 16 17 18 19 20 21 22 23 24 25

Table 1: English alphabet assigned to numeric values

Then this sequence of integers is blocked into column matrices with a row size that matches the size of the encryption

matrix key. For example, if we choose a block size of 4, our plaintext message will be converted into a sequence of

9

For our applications to the Hill cipher, here is the important property of matrix A with a mod-

ular inverse. The proof follows from the definition of the modular inverse.

Theorem 5. Let A be an n × n matrix with gcd(d, det(A)) = 1, and let B be its modular inverse

mod d. Let u be an n × 1 column matrix. Then u ≡ BAu mod d.

3. Hill cipher implementation with modular arithmetic and matrix algebra

With the mathematical foundations of modular arithmetic and matrix algebra in place, we are

ready to describe the implementation of the Hill cipher. We will see that the Hill cipher is a block ci-

pher: after a plaintext message is converted into a sequence of integers (from 0 to 25), this sequence

is partitioned into blocks of predetermined length and these blocks are encrypted one at a time.

We begin the process of encryption by choosing a block size n and then a key. Recall that the

key for the Caesar cipher consists of a single integer which we used to ‘shift’ our message. For the

Hill cipher, our key will be an n × n matrix which is invertible mod 26. From now on, we fix our

modulus to be 26 because this is the number of letters in the English alphabet. We require the con-

dition of invertibility so that our encrypted message can be decrypted later. We will soon see why

and how this works.

3.1 Setting Up the Plaintext
The next step is to convert the letters of our plaintext message to their corresponding values as

shown in Table 1 below, where a corresponds to 0, b to 1, and so on, up to z , which corresponds to

25. Then this sequence of integers is blocked into column matrices with a row size that matches the

size of the encryption matrix key. For example, if we choose a block size of 4, our plaintext message

Therefore, we can write 9−1 ≡ 4 mod 5, and we have

A−1 =

[
4 · 9−1 (−1) · 9−1

(−3) · 9−1 3 · 9−1

]
≡

[
4 · 4 4 · 4
2 · 4 3 · 4

]
=

[
16 16
8 12

]
≡

[
1 1
3 2

]
mod 5.

Hence, a modular inverse for A is C =

[
1 1
3 2

]
. The reader should check that

[
3 1
3 4

]
·
[
1 1
3 2

]
≡

[
1 0
0 1

]
mod 5 .

For our applications to the Hill cipher, here is the important property of matrix A with a modular inverse. The proof

follows from the definition of the modular inverse.

Theorem 5. Let A be an n× n with gcd(d, det(A)) = 1, and let B be its modular inverse mod d. Let u be an n× 1

column matrix. Then u ≡ BAu mod d.

3 Hill cipher implementation with modular arithmetic and matrix algebra

With the mathematical foundations of modular arithmetic and matrix algebra in place, we are ready to describe the

implementation of the Hill cipher. We will see that the Hill cipher is a block cipher: after a plaintext message is

converted into a sequence of integers (from 0 to 25), this sequence is partitioned into blocks of predetermined length

and these blocks are encrypted one at a time.

We begin the process of encryption by choosing a block size n and then a key. Recall that the key for the Caesar

cipher consists of a single integer which we used to ‘shift’ our message. For the Hill cipher, our key will be an n × n

matrix which is invertible mod 26. From now on, we fix our modulus to be 26 because this is the number of letters in

the English alphabet. We require the condition of invertibility so that our encrypted message can be decrypted later.

We will soon see why and how this works.

3.1 Setting up the plaintext

The next step is to convert the letters of our plaintext message to their corresponding values as shown in Table 1 below,

where a corresponds to 0, b to 1, and so on, up to z, which corresponds to 25.

a b c d e f g h i j k l m
0 1 2 3 4 5 6 7 8 9 10 11 12

n o p q r s t u v w x y z
13 14 15 16 17 18 19 20 21 22 23 24 25

Table 1: English alphabet assigned to numeric values

Then this sequence of integers is blocked into column matrices with a row size that matches the size of the encryption

matrix key. For example, if we choose a block size of 4, our plaintext message will be converted into a sequence of

9

Table 1

English alphabet
assigned to numeric values.

72  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

will be converted into a sequence of integers, and these integers will be partitioned into blocks of

length 4. These length-4 blocks will then be used as the entries in a sequence of 4 × 1 column ma-

trices. To illustrate, if our sequence of integers is {b1, b2, . . . , b16}, then we obtain the four column

vectors v1, v2, v3, v4:

In this illustration, it looks like there was a fortunate coincidence – the length of our text string of

16 characters was divisible by our choice of block size of 4. In general, this will not be the case. The

standard practice is to add on a single repeated character so that our numerical sequence is divisible

by the block size. For example, if our integer sequence had only 13 entries {b1, . . . , b13}, we could

end it with 3 repetitions of 25, to yield {b1, . . . , b13, 25, 25, 25}. This ‘padding’ will not provide

any practical obstruction to decoding because the recipient can determine that a long string of z ’s

at the end of the message should be stripped away. With this convention and a block size of n, we

can assume that the integer sequence representing our plaintext is always divisible by n – so it will

look like {b1, b2, . . . , bkn} for some integer k > 0. Here is the partition of our integer sequence into

k blocks of length n, and their corresponding block column matrices:

3.2 Encryption
Now we have a block size (n), and a sequence of blocks: these are our n × 1 column matrices

v1, . . . , vk, each with n components, representing our plaintext message. The next step is to choose

a key, and to describe how this key will encrypt our blocks. For the Hill cipher method, our key

will be an n × n matrix A which is invertible mod 26. To encrypt the first block v1, we will matrix

integers, and these integers will be partitioned into blocks of length 4. These length-4 blocks will then be used as the

entries in a sequence of 4 × 1 column matrices. To illustrate, if our sequence of integers is {b1, b2, . . . , b16}, then we

obtain the four column vectors v1,v2,v3,v4:

v1

��

v2

��

v3

��

v4

��



b1
b2
b3
b4






b5
b6
b7
b8






b9
b10
b11
b12






b13
b14
b15
b16




In this illustration, it looks like there was a fortunate coincidence - the length of our text string of 16 characters was

divisible by our choice of block size of 4. In general, this will not be the case. The standard practice is to add on a single

repeated character so that our numerical sequence is divisible by the block size. For example, if our integer sequence

had only 13 entries {b1, . . . , b13}, we could end it with 3 repetitions of 25, to yield {b1, . . . , b13, 25, 25, 25}. This

‘padding’ will not provide any practical obstruction to decoding because the recipient can determine that a long string

of z’s at the end of the message should be stripped away. With this convention and a block size of n, we can assume

that the integer sequence representing our plaintext is always divisible by n - so it will look like {b1, b2, . . . , bkn} for

some integer k > 0.

Here is the partition of our integer sequence into k blocks of length n, and their corresponding block column matrices:

{ b1, b2, . . . , bn  
1st block

,

��

bn+1, bn+2, . . . , b2n  
2nd block

,

��

. . . , bn(k−1)+1, bn(k−1)+2, . . . , bnk  
kth block

}

��

v1 =



b1
...
bn


 v2 =



bn+1

...
b2n


 · · · vk =



bn(k−1)+1

...
bkn




3.2 Encryption

Now we have a block size (n), and a sequence of blocks: these are our n × 1 column matrices v1, . . . ,vk, each with

n components, representing our plaintext message. The next step is to choose a key, and to describe how this key will

encrypt our blocks. For the Hill cipher method, our key will be an n × n matrix A which is invertible mod 26. To

encrypt the first block v1, we will matrix multiply v1 on the left by our chosen encryption key matrix A. Then we

reduce the entries of the resulting column matrix mod 26:

10

integers, and these integers will be partitioned into blocks of length 4. These length-4 blocks will then be used as the

entries in a sequence of 4 × 1 column matrices. To illustrate, if our sequence of integers is {b1, b2, . . . , b16}, then we

obtain the four column vectors v1,v2,v3,v4:

v1

��

v2

��

v3

��

v4

��



b1
b2
b3
b4






b5
b6
b7
b8






b9
b10
b11
b12






b13
b14
b15
b16




In this illustration, it looks like there was a fortunate coincidence - the length of our text string of 16 characters was

divisible by our choice of block size of 4. In general, this will not be the case. The standard practice is to add on a single

repeated character so that our numerical sequence is divisible by the block size. For example, if our integer sequence

had only 13 entries {b1, . . . , b13}, we could end it with 3 repetitions of 25, to yield {b1, . . . , b13, 25, 25, 25}. This

‘padding’ will not provide any practical obstruction to decoding because the recipient can determine that a long string

of z’s at the end of the message should be stripped away. With this convention and a block size of n, we can assume

that the integer sequence representing our plaintext is always divisible by n - so it will look like {b1, b2, . . . , bkn} for

some integer k > 0.

Here is the partition of our integer sequence into k blocks of length n, and their corresponding block column matrices:

{ b1, b2, . . . , bn  
1st block

,

��

bn+1, bn+2, . . . , b2n  
2nd block

,

��

. . . , bn(k−1)+1, bn(k−1)+2, . . . , bnk  
kth block

}

��

v1 =



b1
...
bn


 v2 =



bn+1

...
b2n


 · · · vk =



bn(k−1)+1

...
bkn




3.2 Encryption

Now we have a block size (n), and a sequence of blocks: these are our n × 1 column matrices v1, . . . ,vk, each with

n components, representing our plaintext message. The next step is to choose a key, and to describe how this key will

encrypt our blocks. For the Hill cipher method, our key will be an n × n matrix A which is invertible mod 26. To

encrypt the first block v1, we will matrix multiply v1 on the left by our chosen encryption key matrix A. Then we

reduce the entries of the resulting column matrix mod 26:

10

Exploring the Hill Cipher through Linear Algebra and Python  73

multiply v1 on the left by our chosen encryption key matrix A. Then we reduce the entries of the

resulting column matrix mod 26:

This provides an encrypted column matrix u1. We repeat this process for remaining block column

matrices v2, v3, . . . , vk. The resulting entries of the encrypted block column matrices u1, . . . , uk

can be put into one long sequence of integers:

Since each matrix ui’s entries are reduced mod 26, these integers are between 0 and 25. We ‘back-

wards-replace’ each of these integers with an alphabet letter: 0 ↦ a, 1 ↦ b, and so on. Here’s the

full encryption process:


encryption

key matrix







b1
b2
...
bn


 =




e1
e2
...
en




reduce mod 26 ��




u1

u2

...
un




A v1 = e1
reduce mod 26 �� u1

This provides an encrypted column matrixu1. We repeat this process for remaining block column matricesv2,v3, . . . ,vk.

The resulting entries of the encrypted block column matrices u1, . . . ,uk can be put into one long sequence of integers:

u1 =



u1

...
un




��

u2 =



un+1

...
u2n




��

· · · uk =



un(k−1)+1

...
ukn




��
{ u1, u2, . . . , un  

1st block

, un+1, un+2, . . . , u2n  
2nd block

, . . . , un(k−1)+1, un(k−1)+2, . . . , unk  
kth block

}

Since each matrix ui’s entries are reduced mod 26, these integers are between 0 and 25. We ‘backwards-replace’ each

of these integers with an alphabet letter: 0 → a, 1 → b, and so on. Here’s the full encryption process:

attackthecastleatdawn

replace each letter with its corresponding integer, padding if necessary
��

{b1, b2, . . . , bnk}

block these nk integers, n at a time, into k column matrices
��

{v1,v2, . . . ,vk}

multiply each column matrix by the encryption matrix A
��

{e1, e2, . . . , ek}

reduce entries of all matrices ei mod 26
��

{u1,u2, . . . ,uk}

‘unblock’: use column matrix entries to form a sequence of integers
��

{u1, u2, . . . , unk}

substitute letters for integers
��

MPWZLDKVNGOQPWSJCNVGZ

11


encryption

key matrix







b1
b2
...
bn


 =




e1
e2
...
en




reduce mod 26 ��




u1

u2

...
un




A v1 = e1
reduce mod 26 �� u1

This provides an encrypted column matrixu1. We repeat this process for remaining block column matricesv2,v3, . . . ,vk.

The resulting entries of the encrypted block column matrices u1, . . . ,uk can be put into one long sequence of integers:

u1 =



u1

...
un




��

u2 =



un+1

...
u2n




��

· · · uk =



un(k−1)+1

...
ukn




��
{ u1, u2, . . . , un  

1st block

, un+1, un+2, . . . , u2n  
2nd block

, . . . , un(k−1)+1, un(k−1)+2, . . . , unk  
kth block

}

Since each matrix ui’s entries are reduced mod 26, these integers are between 0 and 25. We ‘backwards-replace’ each

of these integers with an alphabet letter: 0 → a, 1 → b, and so on. Here’s the full encryption process:

attackthecastleatdawn

replace each letter with its corresponding integer, padding if necessary
��

{b1, b2, . . . , bnk}

block these nk integers, n at a time, into k column matrices
��

{v1,v2, . . . ,vk}

multiply each column matrix by the encryption matrix A
��

{e1, e2, . . . , ek}

reduce entries of all matrices ei mod 26
��

{u1,u2, . . . ,uk}

‘unblock’: use column matrix entries to form a sequence of integers
��

{u1, u2, . . . , unk}

substitute letters for integers
��

MPWZLDKVNGOQPWSJCNVGZ

11


encryption

key matrix







b1
b2
...
bn


 =




e1
e2
...
en




reduce mod 26 ��




u1

u2

...
un




A v1 = e1
reduce mod 26 �� u1

This provides an encrypted column matrixu1. We repeat this process for remaining block column matricesv2,v3, . . . ,vk.

The resulting entries of the encrypted block column matrices u1, . . . ,uk can be put into one long sequence of integers:

u1 =



u1

...
un




��

u2 =



un+1

...
u2n




��

· · · uk =



un(k−1)+1

...
ukn




��
{ u1, u2, . . . , un  

1st block

, un+1, un+2, . . . , u2n  
2nd block

, . . . , un(k−1)+1, un(k−1)+2, . . . , unk  
kth block

}

Since each matrix ui’s entries are reduced mod 26, these integers are between 0 and 25. We ‘backwards-replace’ each

of these integers with an alphabet letter: 0 → a, 1 → b, and so on. Here’s the full encryption process:

attackthecastleatdawn

replace each letter with its corresponding integer, padding if necessary
��

{b1, b2, . . . , bnk}

block these nk integers, n at a time, into k column matrices
��

{v1,v2, . . . ,vk}

multiply each column matrix by the encryption matrix A
��

{e1, e2, . . . , ek}

reduce entries of all matrices ei mod 26
��

{u1,u2, . . . ,uk}

‘unblock’: use column matrix entries to form a sequence of integers
��

{u1, u2, . . . , unk}

substitute letters for integers
��

MPWZLDKVNGOQPWSJCNVGZ

11

74  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

The full encrypted message now consists of this encrypted sequence of letters, which we

call the ciphertext. If an eavesdropper were to intercept this letter sequence, the original

message would remain hidden. Our final encrypted message is the last sequence of letters2,

MPWZLDKVNGOQPWSJCNVGZ, and it is ready to be shared with the world! We can send

it in an unsecured email, write it on a postcard, or shout it from a rooftop for all to hear. Without

the cipher key A, anyone eavesdropping will be unable to ‘reconstruct’ the original block column

matrices v1, . . . , vk (unless they are clever enough to ‘crack’ the code, but more on this later).

3.3 Decryption
From a distant rooftop, our intended message recipient receives our encrypted sequence of letters

on their laptop. Armed with the encryption key matrix A, they are ready to decode the mes-

sage. Since they have the encryption key matrix A, which has been specifically chosen to satisfy

gcd(d, det(A)) = 1, they are guaranteed to find a modular inverse for A: let us call this modular in-

verse C. The ‘key’ – no pun intended – that allows them to decrypt is the following result.

Corollary 1. Let C be the modular inverse of A, and let the column matrices vi, ei, and ui be given

as in Section 3.2 above. Let wi be the reduction mod d of Cui (so all entries of the column matrix

wi are integers wj with 0 ≤ wj < d). Then wi = vi.

Proof. We have

Since wi ≡ Cui, this shows us that wi ≡ vi for all i. Consider v1 and w1, and write

By construction, the entries of v1 are all integers between 0 and d − 1. Also, the entries of

w1 are all integers between 0 and d − 1 because these entries have been reduced mod d. So,

we have b1 ≡ w1, . . . , bn ≡ wn mod d. Since 0 ≤ bi, wj < d, by Theorem 1 we can conclude

2 This encrypted sequence is entirely random, and is only inserted here for illustrative purposes.

The full encrypted message now consists of this encrypted sequence of letters, which we call the ciphertext. If an

eavesdropper were to intercept this letter sequence, the original message would remain hidden. Our final encrypted

message is the last sequence of letters2, MPWZLDKVNGOQPWSJCNVGZ, and it is ready to be shared with the world!

We can send it in an unsecured email, write it on a postcard, or shout it from a rooftop for all to hear. Without the cipher

keyA, anyone eavesdropping will be unable to ‘reconstruct’ the original block column matrices v1, . . . ,vk (unless they

are clever enough to ‘crack’ the code, but more on this later).

3.3 Decryption

From a distant rooftop, our intended message recipient receives our encrypted sequence of letters on their laptop.

Armed with the encryption key matrix A, they are ready to decode the message. Since they have the encryption key

matrix A, which has been specifically chosen to satisfy gcd(d, det(A)) = 1, they are guaranteed to find a modular

inverse for A: let us call this modular inverse C. The ‘key’ - no pun intended - that allows them to decrypt is the

following result.

Corollary 1. Let C be the modular inverse of A, and let the column matrices vi, ei, and ui be given as in Section 3.2

above. Let wi be the reduction mod d of Cui (so all entries of the column matrix wi are integers wj with 0 ≤ wj < d).

Then wi = vi.

Proof. We have

Cui ≡ Cei

≡ C(Avi) (Since ei = Avi)

≡ vi (By Theorem 5).

Since wi ≡ Cui, this shows us that wi ≡ vi for all i. Consider v1 and w1, and write

v1 =



b1
...
bn


 , and w1 =



w1

...
wn


 .

By construction, the entries of v1 are all integers between 0 and d− 1. Also, the entries of w1 are all integers between

0 and d − 1 because these entries have been reduced mod d. So, we have b1 ≡ w1, . . . , bn ≡ wn mod d. Since

0 ≤ bi, wj < d, by Theorem 1 we can conclude that bi = wi for all 1 ≤ i ≤ n. Hence, v1 = w1. The same argument

provides vi = wi for all such column matrices.

2This encrypted sequence is entirely random, and is only inserted here for illustrative purposes.

12

The full encrypted message now consists of this encrypted sequence of letters, which we call the ciphertext. If an

eavesdropper were to intercept this letter sequence, the original message would remain hidden. Our final encrypted

message is the last sequence of letters2, MPWZLDKVNGOQPWSJCNVGZ, and it is ready to be shared with the world!

We can send it in an unsecured email, write it on a postcard, or shout it from a rooftop for all to hear. Without the cipher

keyA, anyone eavesdropping will be unable to ‘reconstruct’ the original block column matrices v1, . . . ,vk (unless they

are clever enough to ‘crack’ the code, but more on this later).

3.3 Decryption

From a distant rooftop, our intended message recipient receives our encrypted sequence of letters on their laptop.

Armed with the encryption key matrix A, they are ready to decode the message. Since they have the encryption key

matrix A, which has been specifically chosen to satisfy gcd(d, det(A)) = 1, they are guaranteed to find a modular

inverse for A: let us call this modular inverse C. The ‘key’ - no pun intended - that allows them to decrypt is the

following result.

Corollary 1. Let C be the modular inverse of A, and let the column matrices vi, ei, and ui be given as in Section 3.2

above. Let wi be the reduction mod d of Cui (so all entries of the column matrix wi are integers wj with 0 ≤ wj < d).

Then wi = vi.

Proof. We have

Cui ≡ Cei

≡ C(Avi) (Since ei = Avi)

≡ vi (By Theorem 5).

Since wi ≡ Cui, this shows us that wi ≡ vi for all i. Consider v1 and w1, and write

v1 =



b1
...
bn


 , and w1 =



w1

...
wn


 .

By construction, the entries of v1 are all integers between 0 and d− 1. Also, the entries of w1 are all integers between

0 and d − 1 because these entries have been reduced mod d. So, we have b1 ≡ w1, . . . , bn ≡ wn mod d. Since

0 ≤ bi, wj < d, by Theorem 1 we can conclude that bi = wi for all 1 ≤ i ≤ n. Hence, v1 = w1. The same argument

provides vi = wi for all such column matrices.

2This encrypted sequence is entirely random, and is only inserted here for illustrative purposes.

12

Exploring the Hill Cipher through Linear Algebra and Python  75

that bi = wi for all 1 ≤ i ≤ n. Hence, v1 = w1. The same argument provides vi = wi for all

such column matrices.

Now the recipient calculates the modular inverse C of A and takes the following steps (which

are essentially reversals of the encryption steps above):

where we have used Corollary 1 for the =⃰⃰ equality.

4. Examples of encryption and decryption using the Hill cipher

Now let’s work out an explicit example. We will choose a plaintext message, fix a block size, build

an encryption key matrix, encrypt, and decrypt. We return to our collaborators, Lin and Al, from

Section 1. Lin would like to try to encrypt and send Al a simple message: hello. However, the world

cannot know this! They choose a block size of 2. Their next step is to find an encryption key matrix.

4.1 Determine an Encryption Key Matrix
Lin needs to find a 2 × 2 integer matrix satisfying the property that gcd(26, det(A)) = 1; i.e., whose

determinant is relatively prime to 26. Since 17 is relatively prime to 26, they can look for an integer

matrix

Now the recipient calculates the modular inverse C of A and takes the following steps (which are essentially reversals

of the encryption steps above):

MPWZLDKVNGOQPWSJCNVGZ

replace each letter with its corresponding integer
��

{u1, u2, . . . , unk}

block these nk integers, n at a time, into k column matrices
��

{u1,u2, . . . ,uk}

multiply each column matrix by decryption key matrix C
��

{Cu1, Cu2, . . . , Cuk}

reduce entries of all matrices Cui mod 26
��

{w1,w2, . . . ,wk}
∗
= {v1,v2, . . . ,vk}

‘unblock’: use column matrix entries to form a sequence of integers
��

{b1, b2, . . . , bnk}

substitute letters for integers
��

attackthecastleatdawn

where we have used Corollary 1 for the ∗
= equality.

4 Examples of encryption and decryption using the Hill cipher

Now let’s work out an explicit example. We will choose a plaintext message, fix a block size, build an encryption key

matrix, encrypt, and decrypt. We return to our collaborators, Lin and Al, from Section 1. Lin would like to try to

encrypt and send Al a simple message: hello. However, the world cannot know this! They choose a block size of 2.

Their next step is to find an encryption key matrix.

4.1 Determine an encryption key matrix

Lin needs to find a 2 × 2 integer matrix satisfying the property that gcd(26, det(A)) = 1; i.e., whose determinant is

relatively prime to 26. Since 17 is relatively prime to 26, they can look for an integer matrix A =

[
q r
s t

]
such that

det(A) = 17. Finding the entries of A that provide them with this condition is done by solving the equation

qt− rs = det(A) = 17.

13

 such that det(A) = 17. Finding the entries of A that provide them with this con-

dition is done by solving the equation

Now the recipient calculates the modular inverse C of A and takes the following steps (which are essentially reversals

of the encryption steps above):

MPWZLDKVNGOQPWSJCNVGZ

replace each letter with its corresponding integer
��

{u1, u2, . . . , unk}

block these nk integers, n at a time, into k column matrices
��

{u1,u2, . . . ,uk}

multiply each column matrix by decryption key matrix C
��

{Cu1, Cu2, . . . , Cuk}

reduce entries of all matrices Cui mod 26
��

{w1,w2, . . . ,wk}
∗
= {v1,v2, . . . ,vk}

‘unblock’: use column matrix entries to form a sequence of integers
��

{b1, b2, . . . , bnk}

substitute letters for integers
��

attackthecastleatdawn

where we have used Corollary 1 for the ∗
= equality.

4 Examples of encryption and decryption using the Hill cipher

Now let’s work out an explicit example. We will choose a plaintext message, fix a block size, build an encryption key

matrix, encrypt, and decrypt. We return to our collaborators, Lin and Al, from Section 1. Lin would like to try to

encrypt and send Al a simple message: hello. However, the world cannot know this! They choose a block size of 2.

Their next step is to find an encryption key matrix.

4.1 Determine an encryption key matrix

Lin needs to find a 2 × 2 integer matrix satisfying the property that gcd(26, det(A)) = 1; i.e., whose determinant is

relatively prime to 26. Since 17 is relatively prime to 26, they can look for an integer matrix A =

[
q r
s t

]
such that

det(A) = 17. Finding the entries of A that provide them with this condition is done by solving the equation

qt− rs = det(A) = 17.

13

Now the recipient calculates the modular inverse C of A and takes the following steps (which are essentially reversals

of the encryption steps above):

MPWZLDKVNGOQPWSJCNVGZ

replace each letter with its corresponding integer
��

{u1, u2, . . . , unk}

block these nk integers, n at a time, into k column matrices
��

{u1,u2, . . . ,uk}

multiply each column matrix by decryption key matrix C
��

{Cu1, Cu2, . . . , Cuk}

reduce entries of all matrices Cui mod 26
��

{w1,w2, . . . ,wk}
∗
= {v1,v2, . . . ,vk}

‘unblock’: use column matrix entries to form a sequence of integers
��

{b1, b2, . . . , bnk}

substitute letters for integers
��

attackthecastleatdawn

where we have used Corollary 1 for the ∗
= equality.

4 Examples of encryption and decryption using the Hill cipher

Now let’s work out an explicit example. We will choose a plaintext message, fix a block size, build an encryption key

matrix, encrypt, and decrypt. We return to our collaborators, Lin and Al, from Section 1. Lin would like to try to

encrypt and send Al a simple message: hello. However, the world cannot know this! They choose a block size of 2.

Their next step is to find an encryption key matrix.

4.1 Determine an encryption key matrix

Lin needs to find a 2 × 2 integer matrix satisfying the property that gcd(26, det(A)) = 1; i.e., whose determinant is

relatively prime to 26. Since 17 is relatively prime to 26, they can look for an integer matrix A =

[
q r
s t

]
such that

det(A) = 17. Finding the entries of A that provide them with this condition is done by solving the equation

qt− rs = det(A) = 17.

13

□

76  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

This equation has infinitely many possible solutions, some of which can be found by writing

Hence, the encryption key matrix can be

This equation has infinitely many possible solutions, some of which can be found by writing

qt− rs = 17

= 20− 3

= 5 · 4− 3 · 1.

Hence, the encryption key matrix can be A =

[
5 3
1 4

]
. Now that the encryption key matrix has been determined, they

need to set up the plaintext before performing matrix multiplication.

4.2 Convert plaintext into matrices of plain-numbers

The next steps are to convert the message to a sequence of integers and partition this sequence into blocks of size 2.

The length of the message, 5, has a remainder of 1 when divided by the block size 2. So, they add a ‘z’ at the end of

the plaintext to ensure that the plaintext can be partitioned into blocks of length 2. The ‘padded’ plaintext message is

now helloz.

The corresponding integers based on Table 1 would be 7, 4, 11, 11, 14, and 25. With blocks of size 2, they have

the following block matrices representing the plaintext:

v1 =

[
7
4

]
, v2 =

[
11
11

]
, v3 =

[
14
25

]
.

4.3 Multiplying the block matrices vi by the encryption key matrix

Matrix multiplication now gives Lin

e1 := Av1 =

[
5 3
1 4

] [
7
4

]
=

[
(5)(7) + (3)(4)
(1)(7) + (4)(4)

]
=

[
47
23

]
,

e2 := Av2 =

[
5 3
1 4

] [
11
11

]
=

[
(5)(11) + (3)(11)
(1)(11) + (4)(11)

]
=

[
88
55

]
,

e3 := Av3 =

[
5 3
1 4

] [
14
25

]
=

[
(5)(14) + (3)(25)
(1)(14) + (4)(25)

]
=

[
145
114

]
.

these column matrices e1, e2, e3 have been encrypted via multiplication by our encryption key matrix A, but they have

not been converted into ciphertext.

14

. Now that the encryption key matrix has been

determined, they need to set up the plaintext before performing matrix multiplication.

4.2 Convert Plaintext into Matrices of Plain-numbers
The next steps are to convert the message to a sequence of integers and partition this sequence into

blocks of size 2. The length of the message, 5, has a remainder of 1 when divided by the block size

2. So, they add a ‘z ’ at the end of the plaintext to ensure that the plaintext can be partitioned into

blocks of length 2. The ‘padded’ plaintext message is now helloz.

The corresponding integers based on Table 1 would be 7, 4, 11, 11, 14, and 25. With blocks of

size 2, they have the following block matrices representing the plaintext:

4.3 Multiplying the Block Matrices vi by the Encryption Key Matrix
Matrix multiplication now gives Lin

These column matrices e1, e2, e3 have been encrypted via multiplication by our encryption key ma-

trix A, but they have not been converted into ciphertext.

4.4 Convert Matrices of Cipher-numbers into Ciphertext
Conversion of e1, e2, e3 into a ciphertext message takes three steps:

1) reduce each ei mod 26 to obtain three column matrices u1, u2, u3 with entries between 0 and 25,

This equation has infinitely many possible solutions, some of which can be found by writing

qt− rs = 17

= 20− 3

= 5 · 4− 3 · 1.

Hence, the encryption key matrix can be A =

[
5 3
1 4

]
. Now that the encryption key matrix has been determined, they

need to set up the plaintext before performing matrix multiplication.

4.2 Convert plaintext into matrices of plain-numbers

The next steps are to convert the message to a sequence of integers and partition this sequence into blocks of size 2.

The length of the message, 5, has a remainder of 1 when divided by the block size 2. So, they add a ‘z’ at the end of

the plaintext to ensure that the plaintext can be partitioned into blocks of length 2. The ‘padded’ plaintext message is

now helloz.

The corresponding integers based on Table 1 would be 7, 4, 11, 11, 14, and 25. With blocks of size 2, they have

the following block matrices representing the plaintext:

v1 =

[
7
4

]
, v2 =

[
11
11

]
, v3 =

[
14
25

]
.

4.3 Multiplying the block matrices vi by the encryption key matrix

Matrix multiplication now gives Lin

e1 := Av1 =

[
5 3
1 4

] [
7
4

]
=

[
(5)(7) + (3)(4)
(1)(7) + (4)(4)

]
=

[
47
23

]
,

e2 := Av2 =

[
5 3
1 4

] [
11
11

]
=

[
(5)(11) + (3)(11)
(1)(11) + (4)(11)

]
=

[
88
55

]
,

e3 := Av3 =

[
5 3
1 4

] [
14
25

]
=

[
(5)(14) + (3)(25)
(1)(14) + (4)(25)

]
=

[
145
114

]
.

these column matrices e1, e2, e3 have been encrypted via multiplication by our encryption key matrix A, but they have

not been converted into ciphertext.

14

This equation has infinitely many possible solutions, some of which can be found by writing

qt− rs = 17

= 20− 3

= 5 · 4− 3 · 1.

Hence, the encryption key matrix can be A =

[
5 3
1 4

]
. Now that the encryption key matrix has been determined, they

need to set up the plaintext before performing matrix multiplication.

4.2 Convert plaintext into matrices of plain-numbers

The next steps are to convert the message to a sequence of integers and partition this sequence into blocks of size 2.

The length of the message, 5, has a remainder of 1 when divided by the block size 2. So, they add a ‘z’ at the end of

the plaintext to ensure that the plaintext can be partitioned into blocks of length 2. The ‘padded’ plaintext message is

now helloz.

The corresponding integers based on Table 1 would be 7, 4, 11, 11, 14, and 25. With blocks of size 2, they have

the following block matrices representing the plaintext:

v1 =

[
7
4

]
, v2 =

[
11
11

]
, v3 =

[
14
25

]
.

4.3 Multiplying the block matrices vi by the encryption key matrix

Matrix multiplication now gives Lin

e1 := Av1 =

[
5 3
1 4

] [
7
4

]
=

[
(5)(7) + (3)(4)
(1)(7) + (4)(4)

]
=

[
47
23

]
,

e2 := Av2 =

[
5 3
1 4

] [
11
11

]
=

[
(5)(11) + (3)(11)
(1)(11) + (4)(11)

]
=

[
88
55

]
,

e3 := Av3 =

[
5 3
1 4

] [
14
25

]
=

[
(5)(14) + (3)(25)
(1)(14) + (4)(25)

]
=

[
145
114

]
.

these column matrices e1, e2, e3 have been encrypted via multiplication by our encryption key matrix A, but they have

not been converted into ciphertext.

14

This equation has infinitely many possible solutions, some of which can be found by writing

qt− rs = 17

= 20− 3

= 5 · 4− 3 · 1.

Hence, the encryption key matrix can be A =

[
5 3
1 4

]
. Now that the encryption key matrix has been determined, they

need to set up the plaintext before performing matrix multiplication.

4.2 Convert plaintext into matrices of plain-numbers

The next steps are to convert the message to a sequence of integers and partition this sequence into blocks of size 2.

The length of the message, 5, has a remainder of 1 when divided by the block size 2. So, they add a ‘z’ at the end of

the plaintext to ensure that the plaintext can be partitioned into blocks of length 2. The ‘padded’ plaintext message is

now helloz.

The corresponding integers based on Table 1 would be 7, 4, 11, 11, 14, and 25. With blocks of size 2, they have

the following block matrices representing the plaintext:

v1 =

[
7
4

]
, v2 =

[
11
11

]
, v3 =

[
14
25

]
.

4.3 Multiplying the block matrices vi by the encryption key matrix

Matrix multiplication now gives Lin

e1 := Av1 =

[
5 3
1 4

] [
7
4

]
=

[
(5)(7) + (3)(4)
(1)(7) + (4)(4)

]
=

[
47
23

]
,

e2 := Av2 =

[
5 3
1 4

] [
11
11

]
=

[
(5)(11) + (3)(11)
(1)(11) + (4)(11)

]
=

[
88
55

]
,

e3 := Av3 =

[
5 3
1 4

] [
14
25

]
=

[
(5)(14) + (3)(25)
(1)(14) + (4)(25)

]
=

[
145
114

]
.

these column matrices e1, e2, e3 have been encrypted via multiplication by our encryption key matrix A, but they have

not been converted into ciphertext.

14

Exploring the Hill Cipher through Linear Algebra and Python  77

2) ‘unblock’ these matrix entries to provide a string of integers, and

3) convert each such integer into a letter of the alphabet.

For example, for the vector e1 whose entries are 47 and 23, Lin needs to reduce each entry mod 26.

The remainders of these numbers when divided by 26 are, respectively, 21 and 23. Using the nota-

tion of the previous section, Lin then has

Unblocking and converting these integers back into letters yields the ciphertext VXKDPK. In a

grand romantic gesture, Lin hires a skywriting airplane to write this message in the sky over the

beaches of Annapolis.

Nursing a hot cocoa by the oceanside, Al sees the message VXKDPK appear in the sky above

them – and they know what to do. A few days prior, Lin had shared with Al the secret encryption

key matrix for their communication, unkown to all others – the matrix

4.4 Convert matrices of cipher-numbers into ciphertext

Conversion of e1, e2, e3 into a ciphertext message takes three steps:

1) reduce each ei mod 26 to obtain three column matrices u1,u2,u3 with entries between 0 and 25,

2) ‘unblock’ these matrix entries to provide a string of integers, and

3) convert each such integer into a letter of the alphabet.

For example, for the vector e1 whose entries are 47 and 23, Lin needs to reduce each entry mod 26. The remainders

of these numbers when divided by 26 are, respectively, 21 and 23. Using the notation of the previous section, Lin then

has

u1 := e1 mod 26 =

[
47
23

]
=

[
21
23

]
, and similarly...

u2 := e2 mod 26 =

[
88
55

]
=

[
10
3

]
,

u3 := e3 mod 26 =

[
145
114

]
=

[
15
10

]
.

Unblocking and converting these integers back into letters yields the ciphertext VXKDPK. In a grand romantic gesture,

Lin hires a skywriting airplane to write this message in the sky over the beaches of Annapolis.

Nursing a hot cocoa by the oceanside, Al sees the message VXKDPK appear in the sky above them - and they know

what to do. A few days prior, Lin had shared with Al the secret encryption key matrix for their communication, unkown

to all others - the matrix A =

[
5 3
1 4

]
.

4.5 Finding the decryption key matrix

Al proceeds by finding the modular inverse of the encryption key matrix A. They first calculate the determinant of

this matrix: det(A) = 5 · 4 − 1 · 3 = 17, and then set out to find the modular inverse of 17. Al can do this using the

Euclidean Algorithm. Or, he can calculate the reduced value of 17 · k mod 26 for all integers k with 0 ≤ k < 26 to

find k such that 17 · k ≡ 1 mod 26. After doing this, Al finds that 17 · 23 = 391 ≡ 1 mod 26, and so the modular

inverse of det(A) is 23.

Next, using this modular inverse and the well-known formula for the inverse of a 2× 2 matrix given in Theorem 3,

Al can find the modular inverse of A:

15

.

4.5 Finding the Decryption Key Matrix
Al proceeds by finding the modular inverse of the encryption key matrix A. They first calculate the

determinant of this matrix: det(A) = 5 · 4 − 1 · 3 = 17, and then set out to find the modular in-

verse of 17. Al can do this using the Euclidean Algorithm. Or, he can calculate the reduced value of

17 · k mod 26 for all integers k with 0 ≤ k < 26 to find k such that 17 · k ≡ 1 mod 26. After doing

this, Al finds that 17 · 23 = 391 ≡ 1 mod 26, and so the modular inverse of det(A) is 23.

Next, using this modular inverse and the well-known formula for the inverse of a 2 × 2 matrix

given in Theorem 3, Al can find the modular inverse of A:

Therefore, Al’s decryption matrix is the modular inverse

A−1 =
1

17

[
4 −3

−1 5

]
= 17−1

[
4 −3

−1 5

]
=

[
23 · 4 23 · (−3)

23 · (−1) 23 · 5

]
≡

[
92 −69

−23 115

]
≡

[
14 9
3 11

]
mod 26.

Therefore, Al’s decryption matrix is the modular inverse C =

[
14 9
3 11

]
.

4.6 Convert ciphertext into matrices of cipher-numbers

With this decryption matrix C in hand, Al’s next step is to take Lin’s skywritten ciphertext VXKDPK and convert it

into a string of integers. Using our Table 1, Al gets the integer sequence {21, 23, 10, 3, 15, 10}. Al knows that Lin used

blocks of size 2 to encrypt the matrix, since that was the size of their encryption key matrix A. Al uses these integer

entries to write down three column matrices:

u1 =

[
21
23

]
, u2 =

[
10
3

]
, u3 =

[
15
10

]
.

4.7 Multiplying block matrices ui by the decryption key matrix

With this decryption matrix C in hand and carefully concealed from prying eyes, Al now multiplies each encoded

matrix ui by C to reveal the deciphered matrices, and then reduces the result of this multiplication mod 26, as we see

here.

Cu1 =

[
14 9
3 11

] [
21
23

]
=

[
(14)(21) + (9)(23)
(3)(21) + (11)(23)

]
=

[
501
316

]
≡

[
7
4

]
mod 26,

Cu2 =

[
14 9
3 11

] [
10
3

]
=

[
(14)(10) + (9)(3)
(3)(10) + (11)(3)

]
=

[
167
63

]
≡

[
11
11

]
mod 26,

Cu3 =

[
14 9
3 11

] [
15
10

]
=

[
(14)(15) + (9)(10)
(3)(15) + (11)(10)

]
=

[
300
155

]
≡

[
14
25

]
mod 26.

Following the notation used in Section 3, our deciphered and mod 26–reduced column matrices are

w1 =

[
7
4

]
,w2 =

[
11
11

]
,w3 =

[
14
25

]
.

The reader is encouraged to check that Al’s deciphered column matrices w1,w2, and w3 are precisely the column

matrices v1,v2, and v3 written down by Lin in Section 4.2, as guaranteed by Corollary 1. Al can take the integer entries

from these matrices, and write them down in order to obtain the deciphered integer sequence {7, 4, 11, 11, 14, 25}.

16

.

4.4 Convert matrices of cipher-numbers into ciphertext

Conversion of e1, e2, e3 into a ciphertext message takes three steps:

1) reduce each ei mod 26 to obtain three column matrices u1,u2,u3 with entries between 0 and 25,

2) ‘unblock’ these matrix entries to provide a string of integers, and

3) convert each such integer into a letter of the alphabet.

For example, for the vector e1 whose entries are 47 and 23, Lin needs to reduce each entry mod 26. The remainders

of these numbers when divided by 26 are, respectively, 21 and 23. Using the notation of the previous section, Lin then

has

u1 := e1 mod 26 =

[
47
23

]
=

[
21
23

]
, and similarly...

u2 := e2 mod 26 =

[
88
55

]
=

[
10
3

]
,

u3 := e3 mod 26 =

[
145
114

]
=

[
15
10

]
.

Unblocking and converting these integers back into letters yields the ciphertext VXKDPK. In a grand romantic gesture,

Lin hires a skywriting airplane to write this message in the sky over the beaches of Annapolis.

Nursing a hot cocoa by the oceanside, Al sees the message VXKDPK appear in the sky above them - and they know

what to do. A few days prior, Lin had shared with Al the secret encryption key matrix for their communication, unkown

to all others - the matrix A =

[
5 3
1 4

]
.

4.5 Finding the decryption key matrix

Al proceeds by finding the modular inverse of the encryption key matrix A. They first calculate the determinant of

this matrix: det(A) = 5 · 4 − 1 · 3 = 17, and then set out to find the modular inverse of 17. Al can do this using the

Euclidean Algorithm. Or, he can calculate the reduced value of 17 · k mod 26 for all integers k with 0 ≤ k < 26 to

find k such that 17 · k ≡ 1 mod 26. After doing this, Al finds that 17 · 23 = 391 ≡ 1 mod 26, and so the modular

inverse of det(A) is 23.

Next, using this modular inverse and the well-known formula for the inverse of a 2× 2 matrix given in Theorem 3,

Al can find the modular inverse of A:

15

A−1 =
1

17

[
4 −3

−1 5

]
= 17−1

[
4 −3

−1 5

]
=

[
23 · 4 23 · (−3)

23 · (−1) 23 · 5

]
≡

[
92 −69

−23 115

]
≡

[
14 9
3 11

]
mod 26.

Therefore, Al’s decryption matrix is the modular inverse C =

[
14 9
3 11

]
.

4.6 Convert ciphertext into matrices of cipher-numbers

With this decryption matrix C in hand, Al’s next step is to take Lin’s skywritten ciphertext VXKDPK and convert it

into a string of integers. Using our Table 1, Al gets the integer sequence {21, 23, 10, 3, 15, 10}. Al knows that Lin used

blocks of size 2 to encrypt the matrix, since that was the size of their encryption key matrix A. Al uses these integer

entries to write down three column matrices:

u1 =

[
21
23

]
, u2 =

[
10
3

]
, u3 =

[
15
10

]
.

4.7 Multiplying block matrices ui by the decryption key matrix

With this decryption matrix C in hand and carefully concealed from prying eyes, Al now multiplies each encoded

matrix ui by C to reveal the deciphered matrices, and then reduces the result of this multiplication mod 26, as we see

here.

Cu1 =

[
14 9
3 11

] [
21
23

]
=

[
(14)(21) + (9)(23)
(3)(21) + (11)(23)

]
=

[
501
316

]
≡

[
7
4

]
mod 26,

Cu2 =

[
14 9
3 11

] [
10
3

]
=

[
(14)(10) + (9)(3)
(3)(10) + (11)(3)

]
=

[
167
63

]
≡

[
11
11

]
mod 26,

Cu3 =

[
14 9
3 11

] [
15
10

]
=

[
(14)(15) + (9)(10)
(3)(15) + (11)(10)

]
=

[
300
155

]
≡

[
14
25

]
mod 26.

Following the notation used in Section 3, our deciphered and mod 26–reduced column matrices are

w1 =

[
7
4

]
,w2 =

[
11
11

]
,w3 =

[
14
25

]
.

The reader is encouraged to check that Al’s deciphered column matrices w1,w2, and w3 are precisely the column

matrices v1,v2, and v3 written down by Lin in Section 4.2, as guaranteed by Corollary 1. Al can take the integer entries

from these matrices, and write them down in order to obtain the deciphered integer sequence {7, 4, 11, 11, 14, 25}.

16

78  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

4.6 Convert Ciphertext into Matrices of Cipher-numbers
With this decryption matrix C in hand, Al’s next step is to take Lin’s skywritten ciphertext

VXKDPK and convert it into a string of integers. Using our Table 1, Al gets the integer sequence

{21, 23, 10, 3, 15, 10}. Al knows that Lin used blocks of size 2 to encrypt the matrix, since that was

the size of their encryption key matrix A. Al uses these integer entries to write down three column

matrices:

4.7 Multiplying Block Matrices ui by the Decryption Key Matrix
With this decryption matrix C in hand and carefully concealed from prying eyes, Al now multiplies

each encoded matrix ui by C to reveal the deciphered matrices, and then reduces the result of this mul-

tiplication mod 26, as we see here.

Following the notation used in Section 3, our deciphered and mod 26-reduced column matrices are

The reader is encouraged to check that Al’s deciphered column matrices w1, w2, and w3 are pre-

cisely the column matrices v1, v2, and v3 written down by Lin in Section 4.2, as guaranteed by

Corollary 1. Al can take the integer entries from these matrices, and write them down in order to

obtain the deciphered integer sequence {7, 4, 11, 11, 14, 25}.

4.8 Convert Deciphered Numbers to Deciphered Text
Al’s final step is just to read off the letters corresponding to these integer, using Table 1. Doing so

Al recovers the message helloz. The convention of padding the plaintext is well-known to Al, so he

strips off the appended ‘z ’ to reveal the deciphered text, Lin’s original message.

A−1 =
1

17

[
4 −3

−1 5

]
= 17−1

[
4 −3

−1 5

]
=

[
23 · 4 23 · (−3)

23 · (−1) 23 · 5

]
≡

[
92 −69

−23 115

]
≡

[
14 9
3 11

]
mod 26.

Therefore, Al’s decryption matrix is the modular inverse C =

[
14 9
3 11

]
.

4.6 Convert ciphertext into matrices of cipher-numbers

With this decryption matrix C in hand, Al’s next step is to take Lin’s skywritten ciphertext VXKDPK and convert it

into a string of integers. Using our Table 1, Al gets the integer sequence {21, 23, 10, 3, 15, 10}. Al knows that Lin used

blocks of size 2 to encrypt the matrix, since that was the size of their encryption key matrix A. Al uses these integer

entries to write down three column matrices:

u1 =

[
21
23

]
, u2 =

[
10
3

]
, u3 =

[
15
10

]
.

4.7 Multiplying block matrices ui by the decryption key matrix

With this decryption matrix C in hand and carefully concealed from prying eyes, Al now multiplies each encoded

matrix ui by C to reveal the deciphered matrices, and then reduces the result of this multiplication mod 26, as we see

here.

Cu1 =

[
14 9
3 11

] [
21
23

]
=

[
(14)(21) + (9)(23)
(3)(21) + (11)(23)

]
=

[
501
316

]
≡

[
7
4

]
mod 26,

Cu2 =

[
14 9
3 11

] [
10
3

]
=

[
(14)(10) + (9)(3)
(3)(10) + (11)(3)

]
=

[
167
63

]
≡

[
11
11

]
mod 26,

Cu3 =

[
14 9
3 11

] [
15
10

]
=

[
(14)(15) + (9)(10)
(3)(15) + (11)(10)

]
=

[
300
155

]
≡

[
14
25

]
mod 26.

Following the notation used in Section 3, our deciphered and mod 26–reduced column matrices are

w1 =

[
7
4

]
,w2 =

[
11
11

]
,w3 =

[
14
25

]
.

The reader is encouraged to check that Al’s deciphered column matrices w1,w2, and w3 are precisely the column

matrices v1,v2, and v3 written down by Lin in Section 4.2, as guaranteed by Corollary 1. Al can take the integer entries

from these matrices, and write them down in order to obtain the deciphered integer sequence {7, 4, 11, 11, 14, 25}.

16

A−1 =
1

17

[
4 −3

−1 5

]
= 17−1

[
4 −3

−1 5

]
=

[
23 · 4 23 · (−3)

23 · (−1) 23 · 5

]
≡

[
92 −69

−23 115

]
≡

[
14 9
3 11

]
mod 26.

Therefore, Al’s decryption matrix is the modular inverse C =

[
14 9
3 11

]
.

4.6 Convert ciphertext into matrices of cipher-numbers

With this decryption matrix C in hand, Al’s next step is to take Lin’s skywritten ciphertext VXKDPK and convert it

into a string of integers. Using our Table 1, Al gets the integer sequence {21, 23, 10, 3, 15, 10}. Al knows that Lin used

blocks of size 2 to encrypt the matrix, since that was the size of their encryption key matrix A. Al uses these integer

entries to write down three column matrices:

u1 =

[
21
23

]
, u2 =

[
10
3

]
, u3 =

[
15
10

]
.

4.7 Multiplying block matrices ui by the decryption key matrix

With this decryption matrix C in hand and carefully concealed from prying eyes, Al now multiplies each encoded

matrix ui by C to reveal the deciphered matrices, and then reduces the result of this multiplication mod 26, as we see

here.

Cu1 =

[
14 9
3 11

] [
21
23

]
=

[
(14)(21) + (9)(23)
(3)(21) + (11)(23)

]
=

[
501
316

]
≡

[
7
4

]
mod 26,

Cu2 =

[
14 9
3 11

] [
10
3

]
=

[
(14)(10) + (9)(3)
(3)(10) + (11)(3)

]
=

[
167
63

]
≡

[
11
11

]
mod 26,

Cu3 =

[
14 9
3 11

] [
15
10

]
=

[
(14)(15) + (9)(10)
(3)(15) + (11)(10)

]
=

[
300
155

]
≡

[
14
25

]
mod 26.

Following the notation used in Section 3, our deciphered and mod 26–reduced column matrices are

w1 =

[
7
4

]
,w2 =

[
11
11

]
,w3 =

[
14
25

]
.

The reader is encouraged to check that Al’s deciphered column matrices w1,w2, and w3 are precisely the column

matrices v1,v2, and v3 written down by Lin in Section 4.2, as guaranteed by Corollary 1. Al can take the integer entries

from these matrices, and write them down in order to obtain the deciphered integer sequence {7, 4, 11, 11, 14, 25}.

16

A−1 =
1

17

[
4 −3

−1 5

]
= 17−1

[
4 −3

−1 5

]
=

[
23 · 4 23 · (−3)

23 · (−1) 23 · 5

]
≡

[
92 −69

−23 115

]
≡

[
14 9
3 11

]
mod 26.

Therefore, Al’s decryption matrix is the modular inverse C =

[
14 9
3 11

]
.

4.6 Convert ciphertext into matrices of cipher-numbers

With this decryption matrix C in hand, Al’s next step is to take Lin’s skywritten ciphertext VXKDPK and convert it

into a string of integers. Using our Table 1, Al gets the integer sequence {21, 23, 10, 3, 15, 10}. Al knows that Lin used

blocks of size 2 to encrypt the matrix, since that was the size of their encryption key matrix A. Al uses these integer

entries to write down three column matrices:

u1 =

[
21
23

]
, u2 =

[
10
3

]
, u3 =

[
15
10

]
.

4.7 Multiplying block matrices ui by the decryption key matrix

With this decryption matrix C in hand and carefully concealed from prying eyes, Al now multiplies each encoded

matrix ui by C to reveal the deciphered matrices, and then reduces the result of this multiplication mod 26, as we see

here.

Cu1 =

[
14 9
3 11

] [
21
23

]
=

[
(14)(21) + (9)(23)
(3)(21) + (11)(23)

]
=

[
501
316

]
≡

[
7
4

]
mod 26,

Cu2 =

[
14 9
3 11

] [
10
3

]
=

[
(14)(10) + (9)(3)
(3)(10) + (11)(3)

]
=

[
167
63

]
≡

[
11
11

]
mod 26,

Cu3 =

[
14 9
3 11

] [
15
10

]
=

[
(14)(15) + (9)(10)
(3)(15) + (11)(10)

]
=

[
300
155

]
≡

[
14
25

]
mod 26.

Following the notation used in Section 3, our deciphered and mod 26–reduced column matrices are

w1 =

[
7
4

]
,w2 =

[
11
11

]
,w3 =

[
14
25

]
.

The reader is encouraged to check that Al’s deciphered column matrices w1,w2, and w3 are precisely the column

matrices v1,v2, and v3 written down by Lin in Section 4.2, as guaranteed by Corollary 1. Al can take the integer entries

from these matrices, and write them down in order to obtain the deciphered integer sequence {7, 4, 11, 11, 14, 25}.

16

Exploring the Hill Cipher through Linear Algebra and Python  79

5. Plaintext attacks on the Hill cipher

As mentioned in Section 1, the Hill cipher is notable for its introduction of more sophisticated (at

the time) linear algebraic methods of encryption. Nevertheless, the method had very limited practi-

cal use. At the time of its introduction, lack of computing technology made implementation of the

algorithm impractical. Ironically, the development of computing power sufficient to implement the

algorithm brought with it enough power to easily attack the cipher.

There are several ways to attack a Hill cipher. For example, if an eavesdropper intercepts a

significant amount of ciphertext, a row-by-row reconstruction of the encryption key matrix is fea-

sible using statistical methods paired with data on frequencies of n-grams in the English language

(See [1] for more details). Another possibility is that an eavesdropper intercepts some ciphertext and
knows (or suspects) the corresponding plaintext. An attack based upon this data is called a plaintext

attack. We will focus on such a plaintext attack on the Hill cipher.

A plaintext attack assumes that the eavesdropper has access to part of the plaintext. In other

words, the eavesdropper has intercepted the ciphertext and (knows or has suspicions on) the corre-

sponding original plaintext. According to [8], “making a good guess as to how just two letter blocks

should be decrypted, we can deduce the matrix that will decrypt the entire message.”

Suppose Lin sends Al another encrypted message, which is intercepted by a nosy and clev-

er eavesdropper named Trinity. She intercepts the ciphertext VX KD SO KD GG FY RE. Suppose

Trinity also knows part of the original message: the plaintext for the first two blocks VX and KD,

which are he and ll respectively. Trinity’s goal is to reconstruct the 2 × 2 encryption matrix A used by

Lin to encode the message. Since Trinity knows that VX decrypted is he, they can replace these

letters with their corresponding integers to write

Similarly, Trinity knows that KD decrypted is ll, and so they can write

Performing the matrix multiplication between the decryption matrices and the cipher-numbers on

the left hand side and setting its equivalence to the corresponding row on the right hand side, we

get following equations:

4.8 Convert deciphered numbers to deciphered text

Al’s final step is just to read off the letters corresponding to these integer, using Table 1 . Doing so Al recovers the

message helloz. The convention of padding the plaintext is well-known to Al, so he strips off the appended ‘z’ to reveal

the deciphered text, Lin’s original message.

5 Plaintext attacks on the Hill cipher

As mentioned in Section 1, the Hill cipher is notable for its introduction of more sophisticated (at the time) linear

algebraic methods of encryption. Nevertheless, the method had very limited practical use. At the time of its introduc-

tion, lack of computing technology made implementation of the algorithm impractical. Ironically, the development of

computing power sufficient to implement the algorithm brought with it enough power to easily attack the cipher.

There are several ways to attack a Hill cipher. For example, if an eavesdropper intercepts a significant amount

of ciphertext, a row-by-row reconstruction of the encryption key matrix is feasible using statistical methods paired

with data on frequencies of n-grams in the English language (See [1] for more details). Another possibility is that an

eavesdropper intercepts some ciphertext and knows (or suspects) the corresponding plaintext. An attack based upon

this data is called a plaintext attack. We will focus on such a plaintext attack on the Hill cipher.

A plaintext attack assumes that the eavesdropper has access to part of the plaintext. In other words, the eavesdropper

has intercepted the ciphertext and (knows or has suspicions on) the corresponding original plaintext. According to [8],

”making a good guess as to how just two letter blocks should be decrypted, we can deduce the matrix that will decrypt

the entire message.”

Suppose Lin sends Al another encrypted message, which is intercepted by a nosy and clever eavesdropper named

Trinity. She intercepts the ciphertext VX KD SO KD GG FY RE. Suppose Trinity also knows part of the original

message: the plaintext for the first two blocks VX and KD, which are he and ll respectively. Trinity’s goal is to reconstruct

the 2× 2 encryption matrix A =

[
q r
s t

]
used by Lin to encode the message. Since Trinity knows that VX decrypted

is he, they can replace these letters with their corresponding integers to write

[
q r
s t

] [
21
23

]
≡

[
7
4

]
mod 26.

Similarly, Trinity knows that KD decrypted is ll, and so they can write

[
q r
s t

] [
10
3

]
≡

[
11
11

]
mod 26.

17

4.8 Convert deciphered numbers to deciphered text

Al’s final step is just to read off the letters corresponding to these integer, using Table 1 . Doing so Al recovers the

message helloz. The convention of padding the plaintext is well-known to Al, so he strips off the appended ‘z’ to reveal

the deciphered text, Lin’s original message.

5 Plaintext attacks on the Hill cipher

As mentioned in Section 1, the Hill cipher is notable for its introduction of more sophisticated (at the time) linear

algebraic methods of encryption. Nevertheless, the method had very limited practical use. At the time of its introduc-

tion, lack of computing technology made implementation of the algorithm impractical. Ironically, the development of

computing power sufficient to implement the algorithm brought with it enough power to easily attack the cipher.

There are several ways to attack a Hill cipher. For example, if an eavesdropper intercepts a significant amount

of ciphertext, a row-by-row reconstruction of the encryption key matrix is feasible using statistical methods paired

with data on frequencies of n-grams in the English language (See [1] for more details). Another possibility is that an

eavesdropper intercepts some ciphertext and knows (or suspects) the corresponding plaintext. An attack based upon

this data is called a plaintext attack. We will focus on such a plaintext attack on the Hill cipher.

A plaintext attack assumes that the eavesdropper has access to part of the plaintext. In other words, the eavesdropper

has intercepted the ciphertext and (knows or has suspicions on) the corresponding original plaintext. According to [8],

”making a good guess as to how just two letter blocks should be decrypted, we can deduce the matrix that will decrypt

the entire message.”

Suppose Lin sends Al another encrypted message, which is intercepted by a nosy and clever eavesdropper named

Trinity. She intercepts the ciphertext VX KD SO KD GG FY RE. Suppose Trinity also knows part of the original

message: the plaintext for the first two blocks VX and KD, which are he and ll respectively. Trinity’s goal is to reconstruct

the 2× 2 encryption matrix A =

[
q r
s t

]
used by Lin to encode the message. Since Trinity knows that VX decrypted

is he, they can replace these letters with their corresponding integers to write

[
q r
s t

] [
21
23

]
≡

[
7
4

]
mod 26.

Similarly, Trinity knows that KD decrypted is ll, and so they can write

[
q r
s t

] [
10
3

]
≡

[
11
11

]
mod 26.

17

80  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

Combining the equations with the same variables, we have the following equations:

These equations can be rewritten as matrix equations. For the equations with variables q and r,

Trinity obtains

For the equations with variables s and t,

To find the variables q, r, s, and t, Trinity only needs to find the modular inverse of the matrix

Performing the matrix multiplication between the decryption matrices and the cipher-numbers on the left hand side and

setting its equivalence to the corresponding row on the right hand side, we get following equations:

(21)(q) + (23)(r) ≡ 7 mod 26

(21)(s) + (23)(t) ≡ 4 mod 26,

(10)(q) + (3)(r) ≡ 11 mod 26

(10)(s) + (3)(t) ≡ 11 mod 26.

Combining the equations with the same variables, we have the following equations:

(21)(q) + (23)(r) ≡ 7 mod 26

(10)(q) + (3)(r) ≡ 11 mod 26

(21)(s) + (23)(t) ≡ 4 mod 26

(10)(s) + (3)(t) ≡ 11 mod 26.

These equations can be rewritten as matrix equations. For the equations with variables q and r, Trinity obtains



21 23

10 3






q

r


 ≡



7

11


 mod 26.

For the equations with variables s and t,



21 23

10 3






s

t


 ≡



4

11


 mod 26.

To find the variables q, r, s, and t, Trinity only needs to find the modular inverse of the matrix

21 23
10 3


(mod 26).

This matrix has determinant 21 · 3 − 23 · 10 = −167. The Euclidean Algorithm can be used to reveal that this

determinant is relatively prime to 26, hence the existence of a modular inverse for this matrix is guaranteed. Note that

−167 ≡ 15 mod 26, and the modular inverse of 15 is 7. Therefore, the method given in the proof of Theorem 5, and

the following example, yields


21 23
10 3

−1

=
−1

167


3 −23

−10 21


=


3 · 7 −23 · 7

−10 · 7 21 · 7


≡


21 −161

−70 147


≡


21 21
8 17


mod 26.

18

. This matrix has determinant 21 · 3 − 23 · 10 = −167. The Euclidean Algorithm

can be used to reveal that this determinant is relatively prime to 26, hence the existence of a modu-

lar inverse for this matrix is guaranteed. Note that −167 ≡ 15 mod 26, and the modular inverse of

15 is 7. Therefore, the method given in the proof of Theorem 5, and the following example, yields

Performing the matrix multiplication between the decryption matrices and the cipher-numbers on the left hand side and

setting its equivalence to the corresponding row on the right hand side, we get following equations:

(21)(q) + (23)(r) ≡ 7 mod 26

(21)(s) + (23)(t) ≡ 4 mod 26,

(10)(q) + (3)(r) ≡ 11 mod 26

(10)(s) + (3)(t) ≡ 11 mod 26.

Combining the equations with the same variables, we have the following equations:

(21)(q) + (23)(r) ≡ 7 mod 26

(10)(q) + (3)(r) ≡ 11 mod 26

(21)(s) + (23)(t) ≡ 4 mod 26

(10)(s) + (3)(t) ≡ 11 mod 26.

These equations can be rewritten as matrix equations. For the equations with variables q and r, Trinity obtains



21 23

10 3






q

r


 ≡



7

11


 mod 26.

For the equations with variables s and t,



21 23

10 3






s

t


 ≡



4

11


 mod 26.

To find the variables q, r, s, and t, Trinity only needs to find the modular inverse of the matrix

21 23
10 3


(mod 26).

This matrix has determinant 21 · 3 − 23 · 10 = −167. The Euclidean Algorithm can be used to reveal that this

determinant is relatively prime to 26, hence the existence of a modular inverse for this matrix is guaranteed. Note that

−167 ≡ 15 mod 26, and the modular inverse of 15 is 7. Therefore, the method given in the proof of Theorem 5, and

the following example, yields


21 23
10 3

−1

=
−1

167


3 −23

−10 21


=


3 · 7 −23 · 7

−10 · 7 21 · 7


≡


21 −161

−70 147


≡


21 21
8 17


mod 26.

18

Performing the matrix multiplication between the decryption matrices and the cipher-numbers on the left hand side and

setting its equivalence to the corresponding row on the right hand side, we get following equations:

(21)(q) + (23)(r) ≡ 7 mod 26

(21)(s) + (23)(t) ≡ 4 mod 26,

(10)(q) + (3)(r) ≡ 11 mod 26

(10)(s) + (3)(t) ≡ 11 mod 26.

Combining the equations with the same variables, we have the following equations:

(21)(q) + (23)(r) ≡ 7 mod 26

(10)(q) + (3)(r) ≡ 11 mod 26

(21)(s) + (23)(t) ≡ 4 mod 26

(10)(s) + (3)(t) ≡ 11 mod 26.

These equations can be rewritten as matrix equations. For the equations with variables q and r, Trinity obtains



21 23

10 3






q

r


 ≡



7

11


 mod 26.

For the equations with variables s and t,



21 23

10 3






s

t


 ≡



4

11


 mod 26.

To find the variables q, r, s, and t, Trinity only needs to find the modular inverse of the matrix

21 23
10 3


(mod 26).

This matrix has determinant 21 · 3 − 23 · 10 = −167. The Euclidean Algorithm can be used to reveal that this

determinant is relatively prime to 26, hence the existence of a modular inverse for this matrix is guaranteed. Note that

−167 ≡ 15 mod 26, and the modular inverse of 15 is 7. Therefore, the method given in the proof of Theorem 5, and

the following example, yields


21 23
10 3

−1

=
−1

167


3 −23

−10 21


=


3 · 7 −23 · 7

−10 · 7 21 · 7


≡


21 −161

−70 147


≡


21 21
8 17


mod 26.

18

Performing the matrix multiplication between the decryption matrices and the cipher-numbers on the left hand side and

setting its equivalence to the corresponding row on the right hand side, we get following equations:

(21)(q) + (23)(r) ≡ 7 mod 26

(21)(s) + (23)(t) ≡ 4 mod 26,

(10)(q) + (3)(r) ≡ 11 mod 26

(10)(s) + (3)(t) ≡ 11 mod 26.

Combining the equations with the same variables, we have the following equations:

(21)(q) + (23)(r) ≡ 7 mod 26

(10)(q) + (3)(r) ≡ 11 mod 26

(21)(s) + (23)(t) ≡ 4 mod 26

(10)(s) + (3)(t) ≡ 11 mod 26.

These equations can be rewritten as matrix equations. For the equations with variables q and r, Trinity obtains



21 23

10 3






q

r


 ≡



7

11


 mod 26.

For the equations with variables s and t,



21 23

10 3






s

t


 ≡



4

11


 mod 26.

To find the variables q, r, s, and t, Trinity only needs to find the modular inverse of the matrix

21 23
10 3


(mod 26).

This matrix has determinant 21 · 3 − 23 · 10 = −167. The Euclidean Algorithm can be used to reveal that this

determinant is relatively prime to 26, hence the existence of a modular inverse for this matrix is guaranteed. Note that

−167 ≡ 15 mod 26, and the modular inverse of 15 is 7. Therefore, the method given in the proof of Theorem 5, and

the following example, yields


21 23
10 3

−1

=
−1

167


3 −23

−10 21


=


3 · 7 −23 · 7

−10 · 7 21 · 7


≡


21 −161

−70 147


≡


21 21
8 17


mod 26.

18

Performing the matrix multiplication between the decryption matrices and the cipher-numbers on the left hand side and

setting its equivalence to the corresponding row on the right hand side, we get following equations:

(21)(q) + (23)(r) ≡ 7 mod 26

(21)(s) + (23)(t) ≡ 4 mod 26,

(10)(q) + (3)(r) ≡ 11 mod 26

(10)(s) + (3)(t) ≡ 11 mod 26.

Combining the equations with the same variables, we have the following equations:

(21)(q) + (23)(r) ≡ 7 mod 26

(10)(q) + (3)(r) ≡ 11 mod 26

(21)(s) + (23)(t) ≡ 4 mod 26

(10)(s) + (3)(t) ≡ 11 mod 26.

These equations can be rewritten as matrix equations. For the equations with variables q and r, Trinity obtains



21 23

10 3






q

r


 ≡



7

11


 mod 26.

For the equations with variables s and t,



21 23

10 3






s

t


 ≡



4

11


 mod 26.

To find the variables q, r, s, and t, Trinity only needs to find the modular inverse of the matrix

21 23
10 3


(mod 26).

This matrix has determinant 21 · 3 − 23 · 10 = −167. The Euclidean Algorithm can be used to reveal that this

determinant is relatively prime to 26, hence the existence of a modular inverse for this matrix is guaranteed. Note that

−167 ≡ 15 mod 26, and the modular inverse of 15 is 7. Therefore, the method given in the proof of Theorem 5, and

the following example, yields


21 23
10 3

−1

=
−1

167


3 −23

−10 21


=


3 · 7 −23 · 7

−10 · 7 21 · 7


≡


21 −161

−70 147


≡


21 21
8 17


mod 26.

18

Performing the matrix multiplication between the decryption matrices and the cipher-numbers on the left hand side and

setting its equivalence to the corresponding row on the right hand side, we get following equations:

(21)(q) + (23)(r) ≡ 7 mod 26

(21)(s) + (23)(t) ≡ 4 mod 26,

(10)(q) + (3)(r) ≡ 11 mod 26

(10)(s) + (3)(t) ≡ 11 mod 26.

Combining the equations with the same variables, we have the following equations:

(21)(q) + (23)(r) ≡ 7 mod 26

(10)(q) + (3)(r) ≡ 11 mod 26

(21)(s) + (23)(t) ≡ 4 mod 26

(10)(s) + (3)(t) ≡ 11 mod 26.

These equations can be rewritten as matrix equations. For the equations with variables q and r, Trinity obtains



21 23

10 3






q

r


 ≡



7

11


 mod 26.

For the equations with variables s and t,



21 23

10 3






s

t


 ≡



4

11


 mod 26.

To find the variables q, r, s, and t, Trinity only needs to find the modular inverse of the matrix

21 23
10 3


(mod 26).

This matrix has determinant 21 · 3 − 23 · 10 = −167. The Euclidean Algorithm can be used to reveal that this

determinant is relatively prime to 26, hence the existence of a modular inverse for this matrix is guaranteed. Note that

−167 ≡ 15 mod 26, and the modular inverse of 15 is 7. Therefore, the method given in the proof of Theorem 5, and

the following example, yields


21 23
10 3

−1

=
−1

167


3 −23

−10 21


=


3 · 7 −23 · 7

−10 · 7 21 · 7


≡


21 −161

−70 147


≡


21 21
8 17


mod 26.

18

Exploring the Hill Cipher through Linear Algebra and Python  81

Trinity can use this modular inverse Trinity can use this modular inverse D =


21 21
8 17


to find the entries q, r, s, and t of Lin’s encryption matrix A:



q

r


 ≡



21 21

8 17






7

11


 ≡



14

9


 mod 26;



s

t


 ≡



21 21

8 17






4

11


 ≡



3

11


 mod 26.

With this calculation, Trinity has recovered the entries of Lin’s original encryption key matrix A: q = 14, r = 9,

s = 3, and t = 11, hence

A ≡



14 9

3 11


 .

Exercise for the reader: Decode the rest of Lin’s message, using the encryption key cracked by Trinity!

6 Coding the Hill cipher in Python

We provide this code as a resource for readers who might be interested in further exploring the Hill cipher and its uses

in other encryption schemes. In this section, we will explain sections of the code and include code cells in the greyed

out enclosures. This section will include all lines of code to run your own Hill cipher in the Python programming

language. This code does not generate new encryption and decryption key matrices. These key matrices were given to

the program. It currently only allows encryption and decryption of the 26 letters of the English alphabet. In each code

cell, comments begin with a hashtag (#) or are enclosed in quotations marks (””), and they are in blue.

1 # impor t numpy l i b r a r y
2 import numpy as np

6.1 Encryption

The determinant of the encryption key matrix has to be relatively prime to 26. The following encryption matrices’

determinants are 17, 3, and 5, are all relatively prime to 26. The following matrices are our encryption keys. With

them, our code can encrypt in blocks of size 2, 3, and 4. The next block of code enters these matrices into the program.

KEY A =


5 3
1 4


,KEY B =



2 5 10
3 5 8
1 2 3


 ,KEY C =



13 3 4 1
24 6 5 1
9 5 5 1
8 3 4 1




19

 to find the entries q, r, s, and t of Lin’s encryption

matrix A:

With this calculation, Trinity has recovered the entries of the modular inverse of Lin’s original

encryption key matrix A: q = 14, r = 9, s = 3, and t = 11, hence

Exercise for the reader: Decode the rest of Lin’s message, using the encryption key cracked

by Trinity!

6. Coding the Hill cipher in Python

We provide this code as a resource for readers who might be interested in further exploring the Hill

cipher and its uses in other encryption schemes. In this section, we will explain sections of the code

and include code cells in the greyed out enclosures. This section will include all lines of code to run

your own Hill cipher in the Python programming language. This code does not generate new en-

cryption and decryption key matrices. These key matrices were given to the program. It currently

only allows encryption and decryption of the 26 letters of the English alphabet. In each code cell,

comments begin with a hashtag (#) or are enclosed in quotations marks (“”), and they are in blue.

6.1 Encryption
The determinant of the encryption key matrix has to be relatively prime to 26. The following

encryption matrices’ determinants, 17, 3, and 5, are all relatively prime to 26. The following

matrices are our encryption keys. With them, our code can encrypt in blocks of size 2, 3, and 4.

Trinity can use this modular inverse D =


21 21
8 17


to find the entries q, r, s, and t of Lin’s encryption matrix A:



q

r


 ≡



21 21

8 17






7

11


 ≡



14

9


 mod 26;



s

t


 ≡



21 21

8 17






4

11


 ≡



3

11


 mod 26.

With this calculation, Trinity has recovered the entries of Lin’s original encryption key matrix A: q = 14, r = 9,

s = 3, and t = 11, hence

A ≡



14 9

3 11


 .

Exercise for the reader: Decode the rest of Lin’s message, using the encryption key cracked by Trinity!

6 Coding the Hill cipher in Python

We provide this code as a resource for readers who might be interested in further exploring the Hill cipher and its uses

in other encryption schemes. In this section, we will explain sections of the code and include code cells in the greyed

out enclosures. This section will include all lines of code to run your own Hill cipher in the Python programming

language. This code does not generate new encryption and decryption key matrices. These key matrices were given to

the program. It currently only allows encryption and decryption of the 26 letters of the English alphabet. In each code

cell, comments begin with a hashtag (#) or are enclosed in quotations marks (””), and they are in blue.

1 # impor t numpy l i b r a r y
2 import numpy as np

6.1 Encryption

The determinant of the encryption key matrix has to be relatively prime to 26. The following encryption matrices’

determinants are 17, 3, and 5, are all relatively prime to 26. The following matrices are our encryption keys. With

them, our code can encrypt in blocks of size 2, 3, and 4. The next block of code enters these matrices into the program.

KEY A =


5 3
1 4


,KEY B =



2 5 10
3 5 8
1 2 3


 ,KEY C =



13 3 4 1
24 6 5 1
9 5 5 1
8 3 4 1




19

Trinity can use this modular inverse D =


21 21
8 17


to find the entries q, r, s, and t of Lin’s encryption matrix A:



q

r


 ≡



21 21

8 17






7

11


 ≡



14

9


 mod 26;



s

t


 ≡



21 21

8 17






4

11


 ≡



3

11


 mod 26.

With this calculation, Trinity has recovered the entries of Lin’s original encryption key matrix A: q = 14, r = 9,

s = 3, and t = 11, hence

A ≡



14 9

3 11


 .

Exercise for the reader: Decode the rest of Lin’s message, using the encryption key cracked by Trinity!

6 Coding the Hill cipher in Python

We provide this code as a resource for readers who might be interested in further exploring the Hill cipher and its uses

in other encryption schemes. In this section, we will explain sections of the code and include code cells in the greyed

out enclosures. This section will include all lines of code to run your own Hill cipher in the Python programming

language. This code does not generate new encryption and decryption key matrices. These key matrices were given to

the program. It currently only allows encryption and decryption of the 26 letters of the English alphabet. In each code

cell, comments begin with a hashtag (#) or are enclosed in quotations marks (””), and they are in blue.

1 # impor t numpy l i b r a r y
2 import numpy as np

6.1 Encryption

The determinant of the encryption key matrix has to be relatively prime to 26. The following encryption matrices’

determinants are 17, 3, and 5, are all relatively prime to 26. The following matrices are our encryption keys. With

them, our code can encrypt in blocks of size 2, 3, and 4. The next block of code enters these matrices into the program.

KEY A =


5 3
1 4


,KEY B =



2 5 10
3 5 8
1 2 3


 ,KEY C =



13 3 4 1
24 6 5 1
9 5 5 1
8 3 4 1




19

Trinity can use this modular inverse D =


21 21
8 17


to find the entries q, r, s, and t of Lin’s encryption matrix A:



q

r


 ≡



21 21

8 17






7

11


 ≡



14

9


 mod 26;



s

t


 ≡



21 21

8 17






4

11


 ≡



3

11


 mod 26.

With this calculation, Trinity has recovered the entries of Lin’s original encryption key matrix A: q = 14, r = 9,

s = 3, and t = 11, hence

A ≡



14 9

3 11


 .

Exercise for the reader: Decode the rest of Lin’s message, using the encryption key cracked by Trinity!

6 Coding the Hill cipher in Python

We provide this code as a resource for readers who might be interested in further exploring the Hill cipher and its uses

in other encryption schemes. In this section, we will explain sections of the code and include code cells in the greyed

out enclosures. This section will include all lines of code to run your own Hill cipher in the Python programming

language. This code does not generate new encryption and decryption key matrices. These key matrices were given to

the program. It currently only allows encryption and decryption of the 26 letters of the English alphabet. In each code

cell, comments begin with a hashtag (#) or are enclosed in quotations marks (””), and they are in blue.

1 # impor t numpy l i b r a r y
2 import numpy as np

6.1 Encryption

The determinant of the encryption key matrix has to be relatively prime to 26. The following encryption matrices’

determinants are 17, 3, and 5, are all relatively prime to 26. The following matrices are our encryption keys. With

them, our code can encrypt in blocks of size 2, 3, and 4. The next block of code enters these matrices into the program.

KEY A =


5 3
1 4


,KEY B =



2 5 10
3 5 8
1 2 3


 ,KEY C =



13 3 4 1
24 6 5 1
9 5 5 1
8 3 4 1




19

C

82  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

The next block of code enters these matrices into the program.

The following lines allow us to enter the encryption key size that we would like to use to encrypt the

message. Based on the keys we have, we can type in 2, 3, or 4.

The user is prompted here to enter their plaintext message to be encrypted and decrypted.

The function plaintext below converts letters of the plaintext to their corresponding values based on

Table 1. The function removes the spaces, converts all of the characters in the string to lower case,

and converts them to their corresponding integer values.

Trinity can use this modular inverse D =


21 21
8 17


to find the entries q, r, s, and t of Lin’s encryption matrix A:



q

r


 ≡



21 21

8 17






7

11


 ≡



14

9


 mod 26;



s

t


 ≡



21 21

8 17






4

11


 ≡



3

11


 mod 26.

With this calculation, Trinity has recovered the entries of Lin’s original encryption key matrix A: q = 14, r = 9,

s = 3, and t = 11, hence

A ≡



14 9

3 11


 .

Exercise for the reader: Decode the rest of Lin’s message, using the encryption key cracked by Trinity!

6 Coding the Hill cipher in Python

We provide this code as a resource for readers who might be interested in further exploring the Hill cipher and its uses

in other encryption schemes. In this section, we will explain sections of the code and include code cells in the greyed

out enclosures. This section will include all lines of code to run your own Hill cipher in the Python programming

language. This code does not generate new encryption and decryption key matrices. These key matrices were given to

the program. It currently only allows encryption and decryption of the 26 letters of the English alphabet. In each code

cell, comments begin with a hashtag (#) or are enclosed in quotations marks (””), and they are in blue.

1 # impor t numpy l i b r a r y
2 import numpy as np

6.1 Encryption

The determinant of the encryption key matrix has to be relatively prime to 26. The following encryption matrices’

determinants are 17, 3, and 5, are all relatively prime to 26. The following matrices are our encryption keys. With

them, our code can encrypt in blocks of size 2, 3, and 4. The next block of code enters these matrices into the program.

KEY A =


5 3
1 4


,KEY B =



2 5 10
3 5 8
1 2 3


 ,KEY C =



13 3 4 1
24 6 5 1
9 5 5 1
8 3 4 1




19
1 # Note : Each i n n e r a r ray i s a row o f t h e m a t r i x
2 KEY A= [[5 , 3] , [1 , 4]]
3 KEY B = [[2 , 5 , 1 0] , [3 , 5 , 8] , [1 , 2 , 3]]
4 KEY C = [[1 3 , 3 , 4 , 1] , [2 4 , 6 , 5 , 1] , [9 , 5 , 5 , 1] , [8 , 3 , 4 , 1]]

The following lines allow us to enter the encryption key size that we would like to use to encrypt the message. Based

on the keys we have, we can type in 2, 3, or 4.

1 key = i n t (input ()) # u s e r i n p u t f o r e n c r y p t i o n key s i z e
2 pr in t (key)

The user is prompted here to enter their plaintext message to be encrypted and decrypted.

1 message = input () # u s e r i n p u t f o r p l a i n t e x t message
2 pr in t (message)

The function plaintext below converts letters of the plaintext to their corresponding values based on Table 1. The

function removes the spaces, converts all of the characters in the string to lower case, and converts them to their

corresponding integer values.

1 def p l a i n t e x t (message) :
2 ””” Accep t s a p l a i n t e x t message , removes space s and c o n v e r t s t o lower case .

Then c o n v e r t s each c h a r a c t e r t o numer i ca l v a l u e . Re t u rn s an ar ray
o f t h e co r r e s po nd i n g i n t e g e r s . Note : Th i s f u n c t i o n does no t i n c l u d e any

s p e c i a l c h a r a c t e r s i n t h e a r ray o f i n t e g e r s . ”””
3

4 m e s s a g e i n t e g e r s = [] #make an ar ray t o s t o r e i n t e g e r s
5

6 me s s age no space = message . r e p l a c e (” ” , ” ”) # remove space s from t h e s t r i n g
7 m e s s a g e l o w e r c a s e = mes s age no space . lower () # c o n v e r t t o lower case
8 me s s age cha r = l i s t (m e s s a g e l o w e r c a s e) # S p l i t s t r i n g i n t o c h a r a c t e r s
9

10 f o r a l e t t e r in mes sage cha r :
11 c o n v e r t e d l e t t e r = ord (a l e t t e r) − 97 #Use ord () f u n c t i o n t o g e t ASCII

v a l u e o f c h a r a c t e r and s u b t r a c t 97 t o g e t a = 0
12 i f (c o n v e r t e d l e t t e r >= 0 and c o n v e r t e d l e t t e r <=25) : #add t h e l e t t e r

t o t h e message i n t e g e r s array , i f i t i s a−z (0 −25) .
13 m e s s a g e i n t e g e r s = np . append (m e s s a g e i n t e g e r s , c o n v e r t e d l e t t e r)
14 re turn m e s s a g e i n t e g e r s

These lines below save the array of integers to the variable named message in numbers.

1 mes s age i n numbe r s = p l a i n t e x t (message) # s t o r e t h e a r ray o f i n t e g e r s
2 pr in t (mes s age i n numbe r s)

The next step is to convert the array plain-numbers into blocks based on the size of the key. The block function below

takes the encryption key matrix size chosen earlier and the array of integers to be blocked.

20

1 # Note : Each i n n e r a r ray i s a row o f t h e m a t r i x
2 KEY A= [[5 , 3] , [1 , 4]]
3 KEY B = [[2 , 5 , 1 0] , [3 , 5 , 8] , [1 , 2 , 3]]
4 KEY C = [[1 3 , 3 , 4 , 1] , [2 4 , 6 , 5 , 1] , [9 , 5 , 5 , 1] , [8 , 3 , 4 , 1]]

The following lines allow us to enter the encryption key size that we would like to use to encrypt the message. Based

on the keys we have, we can type in 2, 3, or 4.

1 key = i n t (input ()) # u s e r i n p u t f o r e n c r y p t i o n key s i z e
2 pr in t (key)

The user is prompted here to enter their plaintext message to be encrypted and decrypted.

1 message = input () # u s e r i n p u t f o r p l a i n t e x t message
2 pr in t (message)

The function plaintext below converts letters of the plaintext to their corresponding values based on Table 1. The

function removes the spaces, converts all of the characters in the string to lower case, and converts them to their

corresponding integer values.

1 def p l a i n t e x t (message) :
2 ””” Accep t s a p l a i n t e x t message , removes space s and c o n v e r t s t o lower case .

Then c o n v e r t s each c h a r a c t e r t o numer i ca l v a l u e . Re t u rn s an ar ray
o f t h e co r r e s po nd i n g i n t e g e r s . Note : Th i s f u n c t i o n does no t i n c l u d e any

s p e c i a l c h a r a c t e r s i n t h e a r ray o f i n t e g e r s . ”””
3

4 m e s s a g e i n t e g e r s = [] #make an ar ray t o s t o r e i n t e g e r s
5

6 me s s age no space = message . r e p l a c e (” ” , ” ”) # remove space s from t h e s t r i n g
7 m e s s a g e l o w e r c a s e = mes s age no space . lower () # c o n v e r t t o lower case
8 me s s age cha r = l i s t (m e s s a g e l o w e r c a s e) # S p l i t s t r i n g i n t o c h a r a c t e r s
9

10 f o r a l e t t e r in mes sage cha r :
11 c o n v e r t e d l e t t e r = ord (a l e t t e r) − 97 #Use ord () f u n c t i o n t o g e t ASCII

v a l u e o f c h a r a c t e r and s u b t r a c t 97 t o g e t a = 0
12 i f (c o n v e r t e d l e t t e r >= 0 and c o n v e r t e d l e t t e r <=25) : #add t h e l e t t e r

t o t h e message i n t e g e r s array , i f i t i s a−z (0 −25) .
13 m e s s a g e i n t e g e r s = np . append (m e s s a g e i n t e g e r s , c o n v e r t e d l e t t e r)
14 re turn m e s s a g e i n t e g e r s

These lines below save the array of integers to the variable named message in numbers.

1 mes s age i n numbe r s = p l a i n t e x t (message) # s t o r e t h e a r ray o f i n t e g e r s
2 pr in t (mes s age i n numbe r s)

The next step is to convert the array plain-numbers into blocks based on the size of the key. The block function below

takes the encryption key matrix size chosen earlier and the array of integers to be blocked.

20

1 # Note : Each i n n e r a r ray i s a row o f t h e m a t r i x
2 KEY A= [[5 , 3] , [1 , 4]]
3 KEY B = [[2 , 5 , 1 0] , [3 , 5 , 8] , [1 , 2 , 3]]
4 KEY C = [[1 3 , 3 , 4 , 1] , [2 4 , 6 , 5 , 1] , [9 , 5 , 5 , 1] , [8 , 3 , 4 , 1]]

The following lines allow us to enter the encryption key size that we would like to use to encrypt the message. Based

on the keys we have, we can type in 2, 3, or 4.

1 key = i n t (input ()) # u s e r i n p u t f o r e n c r y p t i o n key s i z e
2 pr in t (key)

The user is prompted here to enter their plaintext message to be encrypted and decrypted.

1 message = input () # u s e r i n p u t f o r p l a i n t e x t message
2 pr in t (message)

The function plaintext below converts letters of the plaintext to their corresponding values based on Table 1. The

function removes the spaces, converts all of the characters in the string to lower case, and converts them to their

corresponding integer values.

1 def p l a i n t e x t (message) :
2 ””” Accep t s a p l a i n t e x t message , removes space s and c o n v e r t s t o lower case .

Then c o n v e r t s each c h a r a c t e r t o numer i ca l v a l u e . Re t u rn s an ar ray
o f t h e co r r e s po nd i n g i n t e g e r s . Note : Th i s f u n c t i o n does no t i n c l u d e any

s p e c i a l c h a r a c t e r s i n t h e a r ray o f i n t e g e r s . ”””
3

4 m e s s a g e i n t e g e r s = [] #make an ar ray t o s t o r e i n t e g e r s
5

6 me s s age no space = message . r e p l a c e (” ” , ” ”) # remove space s from t h e s t r i n g
7 m e s s a g e l o w e r c a s e = mes s age no space . lower () # c o n v e r t t o lower case
8 me s s age cha r = l i s t (m e s s a g e l o w e r c a s e) # S p l i t s t r i n g i n t o c h a r a c t e r s
9

10 f o r a l e t t e r in mes sage cha r :
11 c o n v e r t e d l e t t e r = ord (a l e t t e r) − 97 #Use ord () f u n c t i o n t o g e t ASCII

v a l u e o f c h a r a c t e r and s u b t r a c t 97 t o g e t a = 0
12 i f (c o n v e r t e d l e t t e r >= 0 and c o n v e r t e d l e t t e r <=25) : #add t h e l e t t e r

t o t h e message i n t e g e r s array , i f i t i s a−z (0 −25) .
13 m e s s a g e i n t e g e r s = np . append (m e s s a g e i n t e g e r s , c o n v e r t e d l e t t e r)
14 re turn m e s s a g e i n t e g e r s

These lines below save the array of integers to the variable named message in numbers.

1 mes s age i n numbe r s = p l a i n t e x t (message) # s t o r e t h e a r ray o f i n t e g e r s
2 pr in t (mes s age i n numbe r s)

The next step is to convert the array plain-numbers into blocks based on the size of the key. The block function below

takes the encryption key matrix size chosen earlier and the array of integers to be blocked.

20

1 # Note : Each i n n e r a r ray i s a row o f t h e m a t r i x
2 KEY A= [[5 , 3] , [1 , 4]]
3 KEY B = [[2 , 5 , 1 0] , [3 , 5 , 8] , [1 , 2 , 3]]
4 KEY C = [[1 3 , 3 , 4 , 1] , [2 4 , 6 , 5 , 1] , [9 , 5 , 5 , 1] , [8 , 3 , 4 , 1]]

The following lines allow us to enter the encryption key size that we would like to use to encrypt the message. Based

on the keys we have, we can type in 2, 3, or 4.

1 key = i n t (input ()) # u s e r i n p u t f o r e n c r y p t i o n key s i z e
2 pr in t (key)

The user is prompted here to enter their plaintext message to be encrypted and decrypted.

1 message = input () # u s e r i n p u t f o r p l a i n t e x t message
2 pr in t (message)

The function plaintext below converts letters of the plaintext to their corresponding values based on Table 1. The

function removes the spaces, converts all of the characters in the string to lower case, and converts them to their

corresponding integer values.

1 def p l a i n t e x t (message) :
2 ””” A c c e p t s a p l a i n t e x t message , removes s p a c e s , and c o n v e r t s t o l o w e r c a s e.

 Then c o n v e r t s each c h a r a c t e r t o n u m e r i c a l v a l u e . R e t u r n s an a r r a y o f
t h e c o r r e s p on d i ng i n t e g e r s . Note : Th i s f u n c t i o n does no t i n c l u d e any

s p e c i a l c h a r a c t e r s i n t h e a r ray o f i n t e g e r s . ”””
3

4 m e s s a g e i n t e g e r s = [] #make an ar ray t o s t o r e i n t e g e r s
5

6 me s s age no space = message . r e p l a c e (” ” , ” ”) # remove space s from t h e s t r i n g
7 m e s s a g e l o w e r c a s e = mes s age no space . lower () # c o n v e r t t o lower case
8 me s s age cha r = l i s t (m e s s a g e l o w e r c a s e) # S p l i t s t r i n g i n t o c h a r a c t e r s
9

10 f o r a l e t t e r in mes sage cha r :
11 c o n v e r t e d l e t t e r = ord (a l e t t e r) − 97 #Use ord () f u n c t i o n t o g e t ASCII

v a l u e o f c h a r a c t e r and s u b t r a c t 97 t o g e t a = 0
12 i f (c o n v e r t e d l e t t e r >= 0 and c o n v e r t e d l e t t e r <=25) : #add t h e l e t t e r

t o t h e message i n t e g e r s array , i f i t i s a−z (0 −25) .
13 m e s s a g e i n t e g e r s = np . append (m e s s a g e i n t e g e r s , c o n v e r t e d l e t t e r)
14 re turn m e s s a g e i n t e g e r s

These lines below save the array of integers to the variable named message in numbers.

1 mes s age i n numbe r s = p l a i n t e x t (message) # s t o r e t h e a r ray o f i n t e g e r s
2 pr in t (mes s age i n numbe r s)

The next step is to convert the array plain-numbers into blocks based on the size of the key. The block function below

takes the encryption key matrix size chosen earlier and the array of integers to be blocked.

20

Exploring the Hill Cipher through Linear Algebra and Python  83

These lines below save the array of integers to the variable named message_in_numbers.

The next step is to convert the array plain-numbers into blocks based on the size of the key. The

block function below takes the encryption key matrix size chosen earlier and the array of integers to

be blocked.

To check the output, we will do an assignment and print statement of the message_in_numbers

_blocked.

After setting up the plaintext, we can now encrypt using matrix multiplication and modular

arithmetic. The function encrypt below accepts the array of arrays and multiplies it by one of the

encryption key matrices, based on the chosen key size. This function then performs matrix multi-

plication for each plain-number (or plaintext of integers) matrix and the encryption key matrix. We

also perform modular arithmetic mod 26 to ensure that we can later convert each number to an

equivalent alphabet letter (using Table 1).

1 # Note : Each i n n e r a r ray i s a row o f t h e m a t r i x
2 KEY A= [[5 , 3] , [1 , 4]]
3 KEY B = [[2 , 5 , 1 0] , [3 , 5 , 8] , [1 , 2 , 3]]
4 KEY C = [[1 3 , 3 , 4 , 1] , [2 4 , 6 , 5 , 1] , [9 , 5 , 5 , 1] , [8 , 3 , 4 , 1]]

The following lines allow us to enter the encryption key size that we would like to use to encrypt the message. Based

on the keys we have, we can type in 2, 3, or 4.

1 key = i n t (input ()) # u s e r i n p u t f o r e n c r y p t i o n key s i z e
2 pr in t (key)

The user is prompted here to enter their plaintext message to be encrypted and decrypted.

1 message = input () # u s e r i n p u t f o r p l a i n t e x t message
2 pr in t (message)

The function plaintext below converts letters of the plaintext to their corresponding values based on Table 1. The

function removes the spaces, converts all of the characters in the string to lower case, and converts them to their

corresponding integer values.

1 def p l a i n t e x t (message) :
2 ””” Accep t s a p l a i n t e x t message , removes space s and c o n v e r t s t o lower case .

Then c o n v e r t s each c h a r a c t e r t o numer i ca l v a l u e . Re t u rn s an ar ray
o f t h e co r r e s po nd i n g i n t e g e r s . Note : Th i s f u n c t i o n does no t i n c l u d e any

s p e c i a l c h a r a c t e r s i n t h e a r ray o f i n t e g e r s . ”””
3

4 m e s s a g e i n t e g e r s = [] #make an ar ray t o s t o r e i n t e g e r s
5

6 me s s age no space = message . r e p l a c e (” ” , ” ”) # remove space s from t h e s t r i n g
7 m e s s a g e l o w e r c a s e = mes s age no space . lower () # c o n v e r t t o lower case
8 me s s age cha r = l i s t (m e s s a g e l o w e r c a s e) # S p l i t s t r i n g i n t o c h a r a c t e r s
9

10 f o r a l e t t e r in mes sage cha r :
11 c o n v e r t e d l e t t e r = ord (a l e t t e r) − 97 #Use ord () f u n c t i o n t o g e t ASCII

v a l u e o f c h a r a c t e r and s u b t r a c t 97 t o g e t a = 0
12 i f (c o n v e r t e d l e t t e r >= 0 and c o n v e r t e d l e t t e r <=25) : #add t h e l e t t e r

t o t h e message i n t e g e r s array , i f i t i s a−z (0 −25) .
13 m e s s a g e i n t e g e r s = np . append (m e s s a g e i n t e g e r s , c o n v e r t e d l e t t e r)
14 re turn m e s s a g e i n t e g e r s

These lines below save the array of integers to the variable named message in numbers.

1 mes s age i n numbe r s = p l a i n t e x t (message) # s t o r e t h e a r ray o f i n t e g e r s
2 pr in t (mes s age i n numbe r s)

The next step is to convert the array plain-numbers into blocks based on the size of the key. The block function below

takes the encryption key matrix size chosen earlier and the array of integers to be blocked.

20

1 def b lock (b l o c k s i z e , t o b l o c k) :
2 ””” Accep t s t h e b l o c k s i z e and ar ray o f i n t e g e r s t o be b l o c k ed . Re t u rn s

re shaped ar ray o f i n t e g e r s . ”””
3 b l o cked = [] # ho l d s a r ray o f numbers t h a t have been b l o c k ed
4

5 #add t h e l e t t e r z as needed by l o o k i n g a t t h e r ema inde r s .
6 r e m a i n d e r o f b l o c k s i z e s = l en (t o b l o c k)%b l o c k s i z e # g e t t h e rema inder o f

t h e s i z e o f t o b l o c k a r ray d i v i d e d by b l o c k s i z e
7 # wh i l e loop t o add t o t o b l o c k a r ray wh i l e rema inder i s no t z e r o .
8 whi le r e m a i n d e r o f b l o c k s i z e s != 0 :
9 t o b l o c k = np . append (t o b l o c k , 2 5) #add 25 u n t i l r ema inder i s z e r o .

10 r e m a i n d e r o f b l o c k s i z e s = l en (t o b l o c k)%b l o c k s i z e # upda t e
r e m a i n d e r o f b l o c k s i z e s w i t h new remainder o f t o b l o c k a r ray
d i v i d e d by b l o c k s i z e

11

12 # re shape t h e 1D ar ray t o 2D us i ng re shape
13 b l o cked = np . r e s h a p e (t o b l o c k , (−1 , b l o c k s i z e))
14 re turn b locked

To check the output, we will do an assignment and print statement of the message in numbers blocked.

1 me s s ag e i n numbe r s b l o ck ed = b lock (key , mes s age i n numbe r s)
2 me s s ag e i n numbe r s b l o ck ed

After setting up the plaintext, we can now encrypt using matrix multiplication and modular arithmetic. The function

encrypt below accepts the array of arrays and multiplies it by one of the encryption key matrices, based on the chosen

key size. This function then performs matrix multiplication for each plain-number (or plaintext of integers) matrix

and the encryption key matrix. We also perform modular arithmetic mod 26 to ensure that we can later convert each

number to an equivalent alphabet letter (using Table 1).

1 def e n c r y p t (p l a i n t e x t i n t e g e r s) :
2 ””” Accep t s p l a i n t e x t i n t e g e r s a r ray . Per forms m a t r i x m u l t i p l i c a t i o n based
3 on t h e key chosen . Re t u rn s p roduc t mod 26 . ”””
4 e n c r yp t e d me s s ag e = [] # ho l d s t h e p roduc t o f t h e m a t r i x m u l t i p l i c a t i o n ,

t h e c i phe r −numbers .
5

6 i f key == 2 :
7 KEY = KEY A;
8 i f key == 3 :
9 KEY = KEY B ;

10 i f key == 4 :
11 KEY = KEY C ;
12

13 f o r a b l o c k p l a i n t e x t in p l a i n t e x t i n t e g e r s :
14 e n c ryp t ed numbe r = np . do t (KEY, a b l o c k p l a i n t e x t)%26 # use np . do t

f u n c t i o n t o per fo rm m a t r i x m u l t i p l i c a t i o n , r educe mod 26
15 e n c r yp t e d me s s ag e = np . append (enc ryp t ed mes s age , enc ryp t ed numbe r) #

s t o r e t h e c i phe r −numbers
16 re turn en c r yp t e d me s s ag e

21

1 def b lock (b l o c k s i z e , t o b l o c k) :
2 ””” Accep t s t h e b l o c k s i z e and ar ray o f i n t e g e r s t o be b l o c k ed . Re t u rn s

re shaped ar ray o f i n t e g e r s . ”””
3 b l o cked = [] # ho l d s a r ray o f numbers t h a t have been b l o c k ed
4

5 #add t h e l e t t e r z as needed by l o o k i n g a t t h e r ema inde r s .
6 r e m a i n d e r o f b l o c k s i z e s = l en (t o b l o c k)%b l o c k s i z e # g e t t h e rema inder o f

t h e s i z e o f t o b l o c k a r ray d i v i d e d by b l o c k s i z e
7 # wh i l e loop t o add t o t o b l o c k a r ray wh i l e rema inder i s no t z e r o .
8 whi le r e m a i n d e r o f b l o c k s i z e s != 0 :
9 t o b l o c k = np . append (t o b l o c k , 2 5) #add 25 u n t i l r ema inder i s z e r o .

10 r e m a i n d e r o f b l o c k s i z e s = l en (t o b l o c k)%b l o c k s i z e # upda t e
r e m a i n d e r o f b l o c k s i z e s w i t h new remainder o f t o b l o c k a r ray
d i v i d e d by b l o c k s i z e

11

12 # re shape t h e 1D ar ray t o 2D us i ng re shape
13 b l o cked = np . r e s h a p e (t o b l o c k , (−1 , b l o c k s i z e))
14 re turn b locked

To check the output, we will do an assignment and print statement of the message in numbers blocked.

1 me s s ag e i n numbe r s b l o ck ed = b lock (key , mes s age i n numbe r s)
2 pr in t (me s s ag e i n numbe r s b l o ck ed)

After setting up the plaintext, we can now encrypt using matrix multiplication and modular arithmetic. The function

encrypt below accepts the array of arrays and multiplies it by one of the encryption key matrices, based on the chosen

key size. This function then performs matrix multiplication for each plain-number (or plaintext of integers) matrix

and the encryption key matrix. We also perform modular arithmetic mod 26 to ensure that we can later convert each

number to an equivalent alphabet letter (using Table 1).

1 def e n c r y p t (p l a i n t e x t i n t e g e r s) :
2 ””” Accep t s p l a i n t e x t i n t e g e r s a r ray . Per forms m a t r i x m u l t i p l i c a t i o n based
3 on t h e key chosen . Re t u rn s p roduc t mod 26 . ”””
4 e n c r yp t e d me s s ag e = [] # ho l d s t h e p roduc t o f t h e m a t r i x m u l t i p l i c a t i o n ,

t h e c i phe r −numbers .
5

6 i f key == 2 :
7 KEY = KEY A
8 i f key == 3 :
9 KEY = KEY B

10 i f key == 4 :
11 KEY = KEY C
12

13 f o r a b l o c k p l a i n t e x t in p l a i n t e x t i n t e g e r s :
14 e n c ryp t ed numbe r = np . do t (KEY, a b l o c k p l a i n t e x t)%26 # use np . do t

f u n c t i o n t o per fo rm m a t r i x m u l t i p l i c a t i o n and reduce mod 26
15 e n c r yp t e d me s s ag e = np . append (enc ryp t ed mes s age , enc ryp t ed numbe r)
16 # s t o r e t h e c i phe r −numbers
17 re turn en c r yp t e d me s s ag e

21

84  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

Similarly, check that we have expected output from the encrypt function.

Now that we have the cipher-numbers (which are encrypted plain-numbers), we can convert the

cipher-numbers to their corresponding letters from Table 1 to get the ciphertext. The following

function ciphertext takes in the array of arrays of cipher-numbers and converts it to letters. It returns

the corresponding string in all upper case.

1 def b lock (b l o c k s i z e , t o b l o c k) :
2 ””” Accep t s t h e b l o c k s i z e and ar ray o f i n t e g e r s t o be b l o c k ed . Re t u rn s

re shaped ar ray o f i n t e g e r s . ”””
3 b l o cked = [] # ho l d s a r ray o f numbers t h a t have been b l o c k ed
4

5 #add t h e l e t t e r z as needed by l o o k i n g a t t h e r ema inde r s .
6 r e m a i n d e r o f b l o c k s i z e s = l en (t o b l o c k)%b l o c k s i z e # g e t t h e rema inder o f

t h e s i z e o f t o b l o c k a r ray d i v i d e d by b l o c k s i z e
7 # wh i l e loop t o add t o t o b l o c k a r ray wh i l e rema inder i s no t z e r o .
8 whi le r e m a i n d e r o f b l o c k s i z e s != 0 :
9 t o b l o c k = np . append (t o b l o c k , 2 5) #add 25 u n t i l r ema inder i s z e r o .

10 r e m a i n d e r o f b l o c k s i z e s = l en (t o b l o c k)%b l o c k s i z e # upda t e
r e m a i n d e r o f b l o c k s i z e s w i t h new remainder o f t o b l o c k a r ray
d i v i d e d by b l o c k s i z e

11

12 # re shape t h e 1D ar ray t o 2D us i ng re shape
13 b l o cked = np . r e s h a p e (t o b l o c k , (−1 , b l o c k s i z e))
14 re turn b locked

To check the output, we will do an assignment and print statement of the message in numbers blocked.

1 me s s ag e i n numbe r s b l o ck ed = b lock (key , mes s age i n numbe r s)
2 pr in t (me s s ag e i n numbe r s b l o ck ed)

After setting up the plaintext, we can now encrypt using matrix multiplication and modular arithmetic. The function

encrypt below accepts the array of arrays and multiplies it by one of the encryption key matrices, based on the chosen

key size. This function then performs matrix multiplication for each plain-number (or plaintext of integers) matrix

and the encryption key matrix. We also perform modular arithmetic mod 26 to ensure that we can later convert each

number to an equivalent alphabet letter (using Table 1).

1 def e n c r y p t (p l a i n t e x t i n t e g e r s) :
2 ””” Accep t s p l a i n t e x t i n t e g e r s a r ray . Per forms m a t r i x m u l t i p l i c a t i o n based
3 on t h e key chosen . Re t u rn s p roduc t mod 26 . ”””
4 e n c r yp t e d me s s ag e = [] # ho l d s t h e p roduc t o f t h e m a t r i x m u l t i p l i c a t i o n ,

t h e c i phe r −numbers .
5

6 i f key == 2 :
7 KEY = KEY A
8 i f key == 3 :
9 KEY = KEY B

10 i f key == 4 :
11 KEY = KEY C
12

13 f o r a b l o c k p l a i n t e x t in p l a i n t e x t i n t e g e r s :
14 e n c ryp t ed numbe r = np . do t (KEY, a b l o c k p l a i n t e x t)%26 # use np . do t

f u n c t i o n t o per fo rm m a t r i x m u l t i p l i c a t i o n and reduce mod 26
15 e n c r yp t e d me s s ag e = np . append (enc ryp t ed mes s age , enc ryp t ed numbe r)
16 # s t o r e t h e c i phe r −numbers
17 re turn en c r yp t e d me s s ag e

21Similarly, check that we have expected output from the encrypt function.

1 m e s s a g e i n n u m b e r s e n c r y p t e d = e n c r y p t (me s s ag e i n numbe r s b l o ck ed)
2 pr in t (m e s s a g e i n n u m b e r s e n c r y p t e d)

Now that we have the cipher-numbers (which are encrypted plain-numbers), we can convert the cipher-numbers to their

corresponding letters from Table 1 to get the ciphertext. The following function ciphertext takes in the array of arrays

of cipher-numbers and converts it to letters. It returns the corresponding string in all upper case.

1 def c i p h e r t e x t (encryp ted msg num) :
2 ””” Accep t s a r ray o f i n t e g e r s . Conve r t s a r ray i n t o l e t t e r s . Re t u rn s a

s t r i n g i n upper case . Note : Th i s f u n c t i o n does no t i n c l u d e any s p e c i a l
c h a r a c t e r s . ”””

3 e nc ryp t ed msg = [] #make an ar ray t o s t o r e i n t e g e r s
4

5 # f o r loop f o r i n t e g e r s i n t h e e n c r y p t e d m s g i n t a r ray
6 f o r a number in encryp ted msg num :
7 conve r t ed numbe r = chr (i n t (a number) + 97) # c o n v e r t a number i n t o an

i n t u s i n g i n t () f u n c t i o n , add 97 t o match t h e ASCII va l ue s , and use
chr () f u n c t i o n t o c o n v e r t t h e i n t e g e r i n t o a c h a r a c t e r

8 e nc ryp t ed msg = np . append (enc ryp ted msg , conve r t ed numbe r)
9

10 e n c r y p t e d m s g s t r = ” ”
11 e n c r y p t e d m s g s t r = e n c r y p t e d m s g s t r . j o i n (enc ryp t ed msg) # use j o i n ()

f u n c t i o n t o c o n v e r t a r ray o f c h a r a c t e r s i n t o a s t r i n g .
12

13 re turn e n c r y p t e d m s g s t r . uppe r ()

Now, we need to store the ciphertext to decrypt the same message. This will be a way to check that the calculations are

correct.

1 m e s s a g e i n l e t t e r s e n c r y p t e d = c i p h e r t e x t (m e s s a g e i n n u m b e r s e n c r y p t e d)
2 pr in t (m e s s a g e i n l e t t e r s e n c r y p t e d)

6.2 Decryption

All code below will be for the decryption process. This process is shorter in the program because we get to reuse some

of the functions above from the encryption process. We are starting with the ciphertext when we decrypt using the

inverse of the key.

The function decrypt accepts the ciphertext string from the encryption process above. Then, it uses the modular

inverse of the key. It then uses the same plaintext function from encryption to convert the string into an array of integers,

and the block function to block the array of integers into an array of arrays. Then we use matrix multiplication and

modular arithmetic to get the deciphered array of integers.

22

Similarly, check that we have expected output from the encrypt function.

1 m e s s a g e i n n u m b e r s e n c r y p t e d = e n c r y p t (me s s ag e i n numbe r s b l o ck ed)
2 pr in t (m e s s a g e i n n u m b e r s e n c r y p t e d)

Now that we have the cipher-numbers (which are encrypted plain-numbers), we can convert the cipher-numbers to their

corresponding letters from Table 1 to get the ciphertext. The following function ciphertext takes in the array of arrays

of cipher-numbers and converts it to letters. It returns the corresponding string in all upper case.

1 def c i p h e r t e x t (encryp ted msg num) :
2 ””” Accep t s a r ray o f i n t e g e r s . Conve r t s a r ray i n t o l e t t e r s . Re t u rn s a

s t r i n g i n upper case . Note : Th i s f u n c t i o n does no t i n c l u d e any s p e c i a l
c h a r a c t e r s . ”””

3 e nc ryp t ed msg = [] #make an ar ray t o s t o r e i n t e g e r s
4

5 # f o r loop f o r i n t e g e r s i n t h e e n c r y p t e d m s g i n t a r ray
6 f o r a number in encryp ted msg num :
7 conve r t ed numbe r = chr (i n t (a number) + 97) # c o n v e r t a number i n t o an

i n t u s i n g i n t () f u n c t i o n , add 97 t o match t h e ASCII va l ue s , and use
chr () f u n c t i o n t o c o n v e r t t h e i n t e g e r i n t o a c h a r a c t e r

8 e nc ryp t ed msg = np . append (enc ryp ted msg , conve r t ed numbe r)
9

10 e n c r y p t e d m s g s t r = ” ”
11 e n c r y p t e d m s g s t r = e n c r y p t e d m s g s t r . j o i n (enc ryp t ed msg) # use j o i n ()

f u n c t i o n t o c o n v e r t a r ray o f c h a r a c t e r s i n t o a s t r i n g .
12

13 re turn e n c r y p t e d m s g s t r . uppe r ()

Now, we need to store the ciphertext to decrypt the same message. This will be a way to check that the calculations are

correct.

1 m e s s a g e i n l e t t e r s e n c r y p t e d = c i p h e r t e x t (m e s s a g e i n n u m b e r s e n c r y p t e d)
2 pr in t (m e s s a g e i n l e t t e r s e n c r y p t e d)

6.2 Decryption

All code below will be for the decryption process. This process is shorter in the program because we get to reuse some

of the functions above from the encryption process. We are starting with the ciphertext when we decrypt using the

inverse of the key.

The function decrypt accepts the ciphertext string from the encryption process above. Then, it uses the modular

inverse of the key. It then uses the same plaintext function from encryption to convert the string into an array of integers,

and the block function to block the array of integers into an array of arrays. Then we use matrix multiplication and

modular arithmetic to get the deciphered array of integers.

22

Exploring the Hill Cipher through Linear Algebra and Python  85

Now, we need to store the ciphertext to decrypt the same message. This will be a way to check that

the calculations are correct.

6.2 Decryption
All code below will be for the decryption process. This process is shorter in the program because

we get to reuse some of the functions above from the encryption process. We are starting with the

ciphertext when we decrypt using the inverse of the key.

The function decrypt accepts the ciphertext string from the encryption process above. Then, it

uses the modular inverse of the key. It then uses the same plaintext function from encryption to con-

vert the string into an array of integers, and the block function to block the array of integers into an

array of arrays. Then we use matrix multiplication and modular arithmetic to get the deciphered

array of integers.

We call our decrypt function to save the deciphered numbers as an array.

Similarly, check that we have expected output from the encrypt function.

1 m e s s a g e i n n u m b e r s e n c r y p t e d = e n c r y p t (me s s ag e i n numbe r s b l o ck ed)
2 m e s s a g e i n n u m b e r s e n c r y p t e d

Now that we have the cipher-numbers (which are encrypted plain-numbers), we can convert the cipher-numbers to their

corresponding letters from Table 1 to get the ciphertext. The following function ciphertext takes in the array of arrays

of cipher-numbers and converts it to letters. It returns the corresponding string in all upper case.

1 def c i p h e r t e x t (encryp ted msg num) :
2 ””” Accep t s a r ray o f i n t e g e r s . Conve r t s a r ray i n t o l e t t e r s . Re t u rn s a

s t r i n g i n upper case . Note : Th i s f u n c t i o n does no t i n c l u d e any
s p e c i a l c h a r a c t e r s . ”””

3 e nc ryp t ed msg = [] #make an ar ray t o s t o r e i n t e g e r s
4

5 # f o r loop f o r i n t e g e r s i n t h e e n c r y p t e d m s g i n t a r ray
6 f o r a number in encryp ted msg num :
7 conve r t ed numbe r = chr (i n t (a number) + 97) # c o n v e r t a number i n t o an

i n t u s i n g i n t () f u n c t i o n , add 97 t o match t h e ASCII va l ue s , and use
chr () f u n c t i o n t o c o n v e r t t h e i n t e g e r i n t o a c h a r a c t e r

8 e nc ryp t ed msg = np . append (enc ryp ted msg , conve r t ed numbe r)
9

10 e n c r y p t e d m s g s t r = ” ”
11 e n c r y p t e d m s g s t r = e n c r y p t e d m s g s t r . j o i n (enc ryp t ed msg) # use j o i n ()

f u n c t i o n t o c o n v e r t a r ray o f c h a r a c t e r s i n t o a s t r i n g .
12

13 re turn e n c r y p t e d m s g s t r . uppe r ()

Now, we need to store the ciphertext to decrypt the same message. This will be a way to check that the calculations are

correct.

1 m e s s a g e i n l e t t e r s e n c r y p t e d = c i p h e r t e x t (m e s s a g e i n n u m b e r s e n c r y p t e d)
2 pr in t (m e s s a g e i n l e t t e r s e n c r y p t e d)

6.2 Decryption

All code below will be for the decryption process. This process is shorter in the program because we get to reuse some

of the functions above from the encryption process. We are starting with the ciphertext when we decrypt using the

inverse of the key.

The function decrypt accepts the ciphertext string from the encryption process above. Then, it uses the modular

inverse of the key. It then uses the same plaintext function from encryption to convert the string into an array of integers,

and the block function to block the array of integers into an array of arrays. Then we use matrix multiplication and

modular arithmetic to get the deciphered array of integers.

221 def d e c r y p t (c i p h e r t e x t s t r) :
2 ””” Accep t s a s t r i n g . Per forms m a t r i x m u l t i p l i c a t i o n u s i ng d e c r y p t i o n key

m a t r i x . Re t u r n s p roduc t mod 26 , an ar ray o f i n t e g e r s . ”””
3 # Note : t h e f o l l o w i n g are modular i n v e r s e s o f t h e e n c r y p t i o n m a t r i x k e y s
4 i f key == 2 :
5 inv KEY = [[1 4 , 9] , [3 , 1 1]]
6 i f key == 3 :
7 inv KEY = [[1 7 , 1 9 , 1 4] , [1 7 , 1 6 , 2 2] , [9 , 9 , 7]]
8 i f key == 4 :
9 inv KEY = [[2 1 , 0 , 0 , 5] , [2 3 , 1 , 2 5 , 3] , [1 1 , 2 4 , 3 , 1 4] , [5 , 5 , 1 7 , 0]]

10

11 c i p h e r t e x t i n t = p l a i n t e x t (c i p h e r t e x t s t r) # Conve r t s s t r t o i n t a r ray
12 c i p h e r t e x t i n t b l o c k e d = b lock (key , c i p h e r t e x t i n t) # b l o c k s c i p h e r t e x t i n t
13 d e c i p h e r e d m e s s ag e = [] # ho l d s p roduc t o f m a t r i x m u l t i p l i c a t i o n o f

i n v e r t e d key and c i p h e r t e x t
14

15 f o r a b l o c k c i p h e r t e x t in c i p h e r t e x t i n t b l o c k e d :
16 d e c i phe r ed numbe r = np . do t (inv KEY , a b l o c k c i p h e r t e x t)%26
17 d e c i p h e r e d m e s s a g e = np . append (dec i phe r ed mes s age , d e c i phe r ed numbe r)
18 re turn de c i ph e r e d m e s s ag e

We call our decrypt function to save the deciphered numbers as an array.

1 m e s s a g e i n n u m b e r s d e c r y p t e d = d e c r y p t (m e s s a g e i n l e t t e r s e n c r y p t e d)
2 pr in t (m e s s a g e i n n u m b e r s d e c r y p t e d)

Last, we need to convert deciphered-numbers into our final deciphered text string. This function is similar to the

plaintext function in Section 6.1, but here we use a different formula to get back to the original message.

1 def d e c i p h e r e d t e x t (dec iphered msg num) :
2 ””” Accep t s t h e a r ray o f numbers . Conve r t s i t i n t o l e t t e r s . Re t u rn s t h e

s t r i n g i n l owe r ca s e . ”””
3 d e c ryp t ed msg = []
4 # f o r loop f o r i n t e g e r s i n dec iphered msg num ar ray
5 f o r a number in dec iphered msg num :
6 conve r t ed numbe r = chr (i n t (a number) + 97)
7 d ec ryp t ed msg = np . append (dec ryp ted msg , conve r t ed numbe r)
8

9 d e c i p h e r e d m s g s t r = ” ”
10 d e c i p h e r e d m s g s t r = d e c i p h e r e d m s g s t r . j o i n (dec ryp t ed msg)
11

12 re turn d e c i p h e r e d m s g s t r

To check, we display the deciphered text. We should get the original message (with possible additional padding)

1 m e s s a g e i n l e t t e r s d e c r y p t e d = d e c i p h e r e d t e x t (m e s s a g e i n n u m b e r s d e c r y p t e d)
2 pr in t (m e s s a g e i n l e t t e r s d e c r y p t e d)

23

1 def d e c r y p t (c i p h e r t e x t s t r) :
2 ””” Accep t s a s t r i n g . Per forms m a t r i x m u l t i p l i c a t i o n u s i ng d e c r y p t i o n key

m a t r i x . Re t u r n s p roduc t mod 26 , an ar ray o f i n t e g e r s . ”””
3 # Note : t h e f o l l o w i n g are modular i n v e r s e s o f t h e e n c r y p t i o n m a t r i x k e y s
4 i f key == 2 :
5 inv KEY = [[1 4 , 9] , [3 , 1 1]]
6 i f key == 3 :
7 inv KEY = [[1 7 , 1 9 , 1 4] , [1 7 , 1 6 , 2 2] , [9 , 9 , 7]]
8 i f key == 4 :
9 inv KEY = [[2 1 , 0 , 0 , 5] , [2 3 , 1 , 2 5 , 3] , [1 1 , 2 4 , 3 , 1 4] , [5 , 5 , 1 7 , 0]]

10

11 c i p h e r t e x t i n t = p l a i n t e x t (c i p h e r t e x t s t r) # Conve r t s s t r t o i n t a r ray
12 c i p h e r t e x t i n t b l o c k e d = b lock (key , c i p h e r t e x t i n t) # b l o c k s c i p h e r t e x t i n t
13 d e c i p h e r e d m e s s ag e = [] # ho l d s p roduc t o f m a t r i x m u l t i p l i c a t i o n o f

i n v e r t e d key and c i p h e r t e x t
14

15 f o r a b l o c k c i p h e r t e x t in c i p h e r t e x t i n t b l o c k e d :
16 d e c i phe r ed numbe r = np . do t (inv KEY , a b l o c k c i p h e r t e x t)%26
17 d e c i p h e r e d m e s s a g e = np . append (dec i phe r ed mes s age , d e c i phe r ed numbe r)
18 re turn de c i ph e r e d m e s s ag e

We call our decrypt function to save the deciphered numbers as an array.

1 m e s s a g e i n n u m b e r s d e c r y p t e d = d e c r y p t (m e s s a g e i n l e t t e r s e n c r y p t e d)
2 pr in t (m e s s a g e i n n u m b e r s d e c r y p t e d)

Last, we need to convert deciphered-numbers into our final deciphered text string. This function is similar to the

plaintext function in Section 6.1, but here we use a different formula to get back to the original message.

1 def d e c i p h e r e d t e x t (dec iphered msg num) :
2 ””” Accep t s t h e a r ray o f numbers . Conve r t s i t i n t o l e t t e r s . Re t u rn s t h e

s t r i n g i n l owe r ca s e . ”””
3 d e c ryp t ed msg = []
4 # f o r loop f o r i n t e g e r s i n dec iphered msg num ar ray
5 f o r a number in dec iphered msg num :
6 conve r t ed numbe r = chr (i n t (a number) + 97)
7 d ec ryp t ed msg = np . append (dec ryp ted msg , conve r t ed numbe r)
8

9 d e c i p h e r e d m s g s t r = ” ”
10 d e c i p h e r e d m s g s t r = d e c i p h e r e d m s g s t r . j o i n (dec ryp t ed msg)
11

12 re turn d e c i p h e r e d m s g s t r

To check, we display the deciphered text. We should get the original message (with possible additional padding)

1 m e s s a g e i n l e t t e r s d e c r y p t e d = d e c i p h e r e d t e x t (m e s s a g e i n n u m b e r s d e c r y p t e d)
2 pr in t (m e s s a g e i n l e t t e r s d e c r y p t e d)

23

86  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

Last, we need to convert deciphered-numbers into our final deciphered text string. This function is

similar to the plaintext function in Section 6.1, but here we use a different formula to get back to the

original message.

To check, we display the deciphered text. We should get the original message (with possible addi-

tional padding).

7. Summary and future research directions

Although the computing power available today renders the Hill cipher obsolete as a stand-alone

encryption method, the Hill cipher provides a valuable and accessible introduction to important

methods in number theory and linear algebra that are used in a wide variety of encryption meth-

ods. In addition, the Hill cipher method is used as part of encryption of images along with 1D

chaotic maps; see [2] for further details. Our research described a plaintext attack on the Hill cipher.

Future coding projects could include the implementation of a software-based approach to breaking

the Hill cipher using plaintext attack, ciphertext only, chosen plaintext or chosen ciphertext attacks,

or the use of the Hill cipher as a diffusion method in combination with other encryption algorithms.

1 def d e c r y p t (c i p h e r t e x t s t r) :
2 ””” Accep t s a s t r i n g . Per forms m a t r i x m u l t i p l i c a t i o n u s i ng d e c r y p t i o n key

m a t r i x . Re t u r n s p roduc t mod 26 , an ar ray o f i n t e g e r s . ”””
3 # Note : t h e f o l l o w i n g are modular i n v e r s e s o f t h e e n c r y p t i o n m a t r i x k e y s
4 i f key == 2 :
5 inv KEY = [[1 4 , 9] , [3 , 1 1]]
6 i f key == 3 :
7 inv KEY = [[1 7 , 1 9 , 1 4] , [1 7 , 1 6 , 2 2] , [9 , 9 , 7]]
8 i f key == 4 :
9 inv KEY = [[2 1 , 0 , 0 , 5] , [2 3 , 1 , 2 5 , 3] , [1 1 , 2 4 , 3 , 1 4] , [5 , 5 , 1 7 , 0]]

10

11 c i p h e r t e x t i n t = p l a i n t e x t (c i p h e r t e x t s t r) # Conve r t s s t r t o i n t a r ray
12 c i p h e r t e x t i n t b l o c k e d = b lock (key , c i p h e r t e x t i n t) # b l o c k s c i p h e r t e x t i n t
13 d e c i p h e r e d m e s s ag e = [] # ho l d s p roduc t o f m a t r i x m u l t i p l i c a t i o n o f

i n v e r t e d key and c i p h e r t e x t
14

15 f o r a b l o c k c i p h e r t e x t in c i p h e r t e x t i n t b l o c k e d :
16 d e c i phe r ed numbe r = np . do t (inv KEY , a b l o c k c i p h e r t e x t)%26
17 d e c i p h e r e d m e s s a g e = np . append (dec i phe r ed mes s age , d e c i phe r ed numbe r)
18 re turn de c i ph e r e d m e s s ag e

We call our decrypt function to save the deciphered numbers as an array.

1 m e s s a g e i n n u m b e r s d e c r y p t e d = d e c r y p t (m e s s a g e i n l e t t e r s e n c r y p t e d)
2 pr in t (m e s s a g e i n n u m b e r s d e c r y p t e d)

Last, we need to convert deciphered-numbers into our final deciphered text string. This function is similar to the

plaintext function in Section 6.1, but here we use a different formula to get back to the original message.

1 def d e c i p h e r e d t e x t (dec iphered msg num) :
2 ””” Accep t s t h e a r ray o f numbers . Conve r t s i t i n t o l e t t e r s . Re t u rn s t h e

s t r i n g i n l owe r ca s e . ”””
3 d e c ryp t ed msg = []
4 # f o r loop f o r i n t e g e r s i n dec iphered msg num ar ray
5 f o r a number in dec iphered msg num :
6 conve r t ed numbe r = chr (i n t (a number) + 97)
7 d ec ryp t ed msg = np . append (dec ryp ted msg , conve r t ed numbe r)
8

9 d e c i p h e r e d m s g s t r = ” ”
10 d e c i p h e r e d m s g s t r = d e c i p h e r e d m s g s t r . j o i n (dec ryp t ed msg)
11

12 re turn d e c i p h e r e d m s g s t r

To check, we display the deciphered text. We should get the original message (with possible additional padding)

1 m e s s a g e i n l e t t e r s d e c r y p t e d = d e c i p h e r e d t e x t (m e s s a g e i n n u m b e r s d e c r y p t e d)
2 pr in t (m e s s a g e i n l e t t e r s d e c r y p t e d)

23

1 def d e c r y p t (c i p h e r t e x t s t r) :
2 ””” Accep t s a s t r i n g . Per forms m a t r i x m u l t i p l i c a t i o n u s i ng d e c r y p t i o n key

m a t r i x . Re t u r n s p roduc t mod 26 , an ar ray o f i n t e g e r s . ”””
3 # Note : t h e f o l l o w i n g are modular i n v e r s e s o f t h e e n c r y p t i o n m a t r i x k e y s
4 i f key == 2 :
5 inv KEY = [[1 4 , 9] , [3 , 1 1]]
6 i f key == 3 :
7 inv KEY = [[1 7 , 1 9 , 1 4] , [1 7 , 1 6 , 2 2] , [9 , 9 , 7]]
8 i f key == 4 :
9 inv KEY = [[2 1 , 0 , 0 , 5] , [2 3 , 1 , 2 5 , 3] , [1 1 , 2 4 , 3 , 1 4] , [5 , 5 , 1 7 , 0]]

10

11 c i p h e r t e x t i n t = p l a i n t e x t (c i p h e r t e x t s t r) # Conve r t s s t r t o i n t a r ray
12 c i p h e r t e x t i n t b l o c k e d = b lock (key , c i p h e r t e x t i n t) # b l o c k s c i p h e r t e x t i n t
13 d e c i p h e r e d m e s s ag e = [] # ho l d s p roduc t o f m a t r i x m u l t i p l i c a t i o n o f

i n v e r t e d key and c i p h e r t e x t
14

15 f o r a b l o c k c i p h e r t e x t in c i p h e r t e x t i n t b l o c k e d :
16 d e c i phe r ed numbe r = np . do t (inv KEY , a b l o c k c i p h e r t e x t)%26
17 d e c i p h e r e d m e s s a g e = np . append (dec i phe r ed mes s age , d e c i phe r ed numbe r)
18 re turn de c i ph e r e d m e s s ag e

We call our decrypt function to save the deciphered numbers as an array.

1 m e s s a g e i n n u m b e r s d e c r y p t e d = d e c r y p t (m e s s a g e i n l e t t e r s e n c r y p t e d)
2 pr in t (m e s s a g e i n n u m b e r s d e c r y p t e d)

Last, we need to convert deciphered-numbers into our final deciphered text string. This function is similar to the

plaintext function in Section 6.1, but here we use a different formula to get back to the original message.

1 def d e c i p h e r e d t e x t (dec iphered msg num) :
2 ””” Accep t s t h e a r ray o f numbers . Conve r t s i t i n t o l e t t e r s . Re t u rn s t h e

s t r i n g i n l owe r ca s e . ”””
3 d e c ryp t ed msg = []
4 # f o r loop f o r i n t e g e r s i n dec iphered msg num ar ray
5 f o r a number in dec iphered msg num :
6 conve r t ed numbe r = chr (i n t (a number) + 97)
7 d ec ryp t ed msg = np . append (dec ryp ted msg , conve r t ed numbe r)
8

9 d e c i p h e r e d m s g s t r = ” ”
10 d e c i p h e r e d m s g s t r = d e c i p h e r e d m s g s t r . j o i n (dec ryp t ed msg)
11

12 re turn d e c i p h e r e d m s g s t r

To check, we display the deciphered text. We should get the original message (with possible additional padding)

1 m e s s a g e i n l e t t e r s d e c r y p t e d = d e c i p h e r e d t e x t (m e s s a g e i n n u m b e r s d e c r y p t e d)
2 pr in t (m e s s a g e i n l e t t e r s d e c r y p t e d)

23

References

[1] Craig Bauer and Katherine Millward, Cracking matrix encryption row by row, Cryptologia.

31 (2007), no. 1, 76–83, DOI 10.1080/01611190600947806.

[2] M. Essaid, I. Akharraz, A Saaidi, and A. Mouhib, Image encryption scheme based on a new

secure variant of Hill cipher and 1D chaotic maps, Journal of Information Security and

Applications. 47 (2019), 173–187, DOI 10.1016/j.jisa.2019.05.006.

Exploring the Hill Cipher through Linear Algebra and Python  87

[3] Lester S. Hill, Concerning certain linear transformation apparatus of cryptography, The

American Mathematical Monthly. 38 (1929), no. 3, 135–54, DOI https://doi.

org/10.2307/2300969.

[4] _____________, Cryptography in an algebraic alphabet, The American Mathematical

Monthly. 36 (1929), no. 6, 306–312, DOI https://doi.org/10.2307/2298294.

[5] Ron Larson, Elementary linear algebra, eighth ed., Cengage Learning, 2017.

[6] Weisner Louis and Lester Hill, Message protector, https://patents.google.com/patent/

US1845947A/en, 1929.

[7] Kenneth Rosen, Elementary number theory and its applications, third ed., Pearson, 2010.

[8] The Department of Mathematics and Computer Science at Emory Oxford College,

The Hill Cipher, http://mathcenter.oxford.emory.edu/site/math125/hillCipher/.

[9] Lawrence C. Washington, Introduction to cryptography with coding theory, second ed., Pearson,

2006.

88  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

Lauren E. Street

Alcohol Abuse:
Causes, Effects,
and Potential
Solutions through a
Biopsychosocial Lens
Abstract

Substance use disorder is defined as the perpetual craving and re-

peated use of a drug despite its negative impact on the user and

their overall well-being. One drug that is very common in sub-

stance use disorders is alcohol. Alcohol serves as a stimulant drug

in small doses, but when large amounts are consumed, it acts as a

depressant. There are a number of biological, psychological, and

social causes and negative effects of alcohol use disorder. Despite

often being taken for granted, alcohol contributes to a signifi-

cant number of deaths in the United States every year. Studying

and understanding alcohol use disorder through what is termed

a “biopsychosocial lens” can help researchers and health officials

continue to determine the causes for this disorder, as well as poten-

tial treatments for individuals living with it. Additionally, cultural

differences must be considered when making any generalizations

about alcohol use disorder, or the groups of people that it impacts.

Future research will likely continue to build on what researchers

already know and may eventually lead to a better understanding

of the disorder, and even more effective methods of treatment.

Key words

alcohol use disorder

substance use disorder

alcoholism

abuse

treatment

Faculty Mentor

Rachell Tannenbaum, Ph.D.
Professor, Psychology Department

Alcohol Abuse: Causes, Effects, and Potential Solutions through a Biopsychosocial Lens  89

Substance Abuse and Alcoholism

Substances such as drugs and other chemicals have the ability to

temporarily alter an individual’s state of consciousness and bend

their reality. There is a variety of reasons a person may choose to

use drugs including to improve health or relieve pain, for religious

purposes, or sometimes just for fun. Moderate use of prescribed

or legalized recreational drugs can often give users their desired

experience without any maladaptive consequences; however,

many individuals use the drug so frequently that their moderate

use becomes a substance abuse disorder (Myers & DeWall, 2018,

101). Substance abuse disorder refers to the perpetual craving and

repeated use of a drug despite its negative impact on the user’s

physical health and overall life. Those who struggle with this disor-

der face its devastating impacts on their lives every day, and often

struggle to recover from it.

One drug common with substance abuse disorders is alcohol.

Alcohol is classified as a stimulant drug in small doses, but if the

user consumes a large amount of the drug it functions as a depres-

sant. Like any drug, alcohol alters the brain’s regular functioning.

When it enters the brain, its effects include (a) increasing the effi-

ciency of the inhibitory neurotransmitter GABA, and (b) impeding

the ability of glutamate, an excitatory neurotransmitter, to bind

to receptor sites in the brain (Genetic Science Learning Center,

2013). This double inhibitory effect is what slows the brain’s neural

activity as well as the bodily functions, producing the depressant

effect. For many Americans, drinking alcohol is a “cool” and highly

sought-after way to relax or have fun. In many cases, it seems like a

nearly harmless way to kick off a weekend for a wide range of ages.

Unfortunately, this perception that drinking alcohol is a casual,

completely harmless activity is far from accurate, as the drug con-

tributes to roughly 95,000 deaths a year in the United States alone,

making it the country’s third most common preventable cause of

death (National Institute on Alcohol Abuse and Alcoholism, 2021).

90  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

Alcoholism: Problem Justification

Because of the common misconception that alcohol is a casual and

harmless drug, it is one that many individuals start using at a very

young age. According to the National Institute on Alcohol Abuse

and Alcoholism, approximately 4% of all alcohol consumed in the

United States is consumed by individuals ages 12 to 20, making it

the most used drug among the country’s youth (National Institute

on Alcohol Abuse and Alcoholism, 2021). While the reasons for

consuming alcohol at any age are specific to the individual, the

oftentimes tragic effects impact many.

An individual’s drinking may physically harm only them-

selves directly, with slowed body functions, impaired memory, and

liver damage, but it can indirectly harm others in numerous ways

as well. The Motor Vehicle Crash Data Report released in 2021

by the National Highway Traffic Safety Administration (NHTSA)

showed that in the year 2019, 28% of all traffic fatalities in the

United States were alcohol related (pg. 1). In many cases, the

impaired driver is not the only one injured in these car crashes,

and innocent lives are lost. Aside from alcohol’s effects behind

the wheel, alcohol use contributes to around 700,000 assaults, in-

cluding nearly 97,000 sexual assaults in the United States each

year (Myers & DeWall, 2018). Like most abused drugs, alcohol

affects many more people than just the user, with those additional

people impacted typically being those closest to the user. When

an individual has crossed the threshold to alcohol use disorder,

family and friends begin to suffer the consequences of alcoholism.

Every substance abuse disorder involves maladaptive effects on the

user’s daily life. Whether they are actively out drinking or away

seeking treatment for their condition, an individual’s reliance on

alcohol may impede their ability to maintain relationships. In any

case, the loss of these relationships may lead to the loss of support

that an individual dealing with alcoholism may have in their life,

possibly extending their battle with addiction by decreasing the

Alcohol Abuse: Causes, Effects, and Potential Solutions through a Biopsychosocial Lens  91

likelihood of them seeking treatment. In a broader spectrum, al-

cohol use disorder also negatively affects the nation overall, costing

the United States more than $249 billion every year (Witkiewitz et

al., 2019). While it is true that people who drink alcohol respon-

sibly typically experience few negative effects, many do not do so

responsibly. These devastating effects have the potential to worsen

as an individual’s drinking becomes more excessive, resulting in

the development of alcohol use disorder.

Alcoholism: Causes and Effects

Approximately 14.5 million people were diagnosed with alco-

hol use disorder in 2019 (Substance Abuse and Mental Health

Services Administration, 2019, pg. 35). Many individuals allow

their cognitive bias to overrule logic and ignore the evidence, be-

coming overconfident in their ability to refrain from developing

such disorders, and ultimately believing that they are an exception

to the statistics. For years, researchers have studied possible causes

as to why people develop alcohol use disorder, thoroughly study-

ing the issue from biological, social-cultural, developmental, and

physical/mental health perspectives.

Research suggests that individuals with a certain nucleotide

polymorphism in their DNA may be more prone to alcohol de-

pendence and abuse (Kareken et al., 2010). The altered DNA

affects their brains’ reward responses, which in experienced drink-

ers can lead to more positive experiences associated with alcohol,

and therefore increased usage, which increases the odds of addic-

tion. Regardless of age or gender, the more alcohol an individual

consumes, the higher their tolerance becomes, and hence the

more they must consume to achieve those reward responses in the

brain. Biologically speaking, men are more likely than women to

develop a dependence on the drug (National Institute on Alcohol

Abuse and Alcoholism, 2021). This may be a result of differences

in emotion processing or coping mechanisms for trauma or stress.

92  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

Furthermore, those diagnosed with mental illnesses such as

bipolar disorder and depression are likely to use alcohol and oth-

er substances as a coping mechanism and worsen their illness as

a result (Smith et al., 2021). Excessive consumption of alcohol

contributes to the development of certain psychiatric disorders

(U.S. Department of Health and Human Services, 2021). Though

alcohol has temporary stimulating effects, and sometimes gives

those who are struggling with stress an “escape,” the drug pro-

vides no long-term positive effects.

From a social-cultural perspective, researchers have found

that those who engage in drinking alcohol do so to fit in or keep

up with what they think society’s expectation is for them. One

study found that drinking in adolescents is heavily influenced by

their friendship statuses with their peers. The study concluded

that in social groups where “friendship status” mattered (such as

cooperative team sports), adolescents were more likely to drink

with only “reciprocated friends” (in other words, those who

mutually considered said peer as a friend). Conversely, in groups

where friendships status was less important, such as school clubs

and activities, adolescents drank with peers regardless of whether

they were reciprocated friends (Fujimoto & Valente, 2013). In

teams and cooperative groups, one may be more concerned

with their peers’ perception of them, only engaging in activities

that they are sure will be accepted. In less cooperative groups,

the adolescents subsequently paid less attention to what was

acceptable in the group, perhaps in an attempt to act “cool” or

rebellious. Regardless of what is socially acceptable or expected

at a given time, people tend to act in ways based on what they

believe would make them fit into a particular group. The more a

person believes they should be drinking, the more they will, which

can often lead to abuse, and is a large reason so many people ages

12-17 have alcohol use disorder (U.S. Department of Health and

Human Services, 2021).

Alcohol Abuse: Causes, Effects, and Potential Solutions through a Biopsychosocial Lens  93

In terms of social-cultural effects of alcohol use disorder, an

individual abusing alcohol tends to neglect many important social

aspects of their life to make time for alcohol. This includes but is

not limited to decreasing time spent with family and friends and

declining motivation for work. This neglect results in a deteriora-

tion of the user’s relationships and support systems.

Alcoholism: Potential Solutions

As more knowledge is gained on the causes and effects of alcohol

use disorder, researchers have investigated more effective meth-

ods of treatment and prevention. Currently, many individuals

seek recovery through Alcoholics Anonymous (AA), a fellowship

of “sobriety seekers” who meet with one another to share their

stories, strength, and hope with one another as they commit them-

selves to accepting their wrongs, mending affected relationships,

and actively work towards recovering themselves and their lives

from their illness (Alcoholics Anonymous). According to one study,

AA was 60% more successful than other methods of intervention

or no intervention at all, by reducing the participants’ consump-

tion of alcohol and increasing the length of time they abstained

from drinking alcohol (Erickson, 2020). Though the statistics sup-

port AA’s effectiveness, some professionals skepticize that the lack

of professional involvement in such treatment is cause for concern

(Erickson, 2020). This led researchers to a newer method of treat-

ment being studied, motivational interviewing and intervention.

Motivational interviewing and intervention is a communica-

tion style that, like AA, encourages the patient to establish their

own meaning for their disorder and develop a genuine desire to

change their behavior. Several studies, each utilizing different

samples of people, have tested the effectiveness of motivational

interviewing. In one, over-the-phone motivational interviewing

followed by either feedback or psychoeducation (an approach

that combines educating the participant about their disorder with

94  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

structure and feedback in a safe environment) was used to treat

active members of the military dealing with untreated alcohol

use disorder (Lukens, 2015). Though all participants decreased

their alcohol consumption, those who received feedback reported

fewer drinks per week than those who received psychoeducation

(Walker et al., 2017). In a different study, individual motivation-

al interventions were used to treat adolescents abusing alcohol.

When combined with family checkups, the treatment was found

to be even more effective than it was without family checkups at

short-term follow-ups three, six, and twelve months into treatment

(Spirito et al., 2011). While therapy has been used in the past, mo-

tivational interviewing and intervention has since proven to be a

more effective method of treatment because it encourages the pa-

tient to actively take steps toward their recovery with professional

guidance.

The effectiveness of these interviews will also depend on oth-

er factors such as cultural and societal expectations. As the country

moves toward becoming more open about mental health aware-

ness, and subsequently the rehabilitation of those suffering from

said disorders, there will be more success in the researching and

studying of ways to treat individuals with alcohol use disorder.

However, if a struggling individual’s culture and way of life inhibits

them from reaching out for help, several previously stated methods

will not benefit them. For example, in some cultural groups there is

a stigma around seeking help for mental health problems or a pref-

erence for seeking help from spiritual or community leaders over

health professionals; people may also legitimately be leery after

prior experiences, either personal or observed with discrimination

in treatment settings (Modir et al., 2022). In addition, although

alcohol use disorder does not discriminate by wealth, those who

lack financial resources may not be able to afford adequate treat-

ment. Continuing to study this ever-growing issue and its causes

may lead to a better understanding of substance abuse in general,

Alcohol Abuse: Causes, Effects, and Potential Solutions through a Biopsychosocial Lens  95

and eventually the development of more effective treatment op-

tions and methods of prevention. When discussing alcohol abuse

and similar problems, it is important to understand not only the

biological, psychological, and social causes and effects, but the in-

teractions between them. Alcohol abuse does not have just one

cause or one effect, and these causes are never only biological, one

psychological, or only social. Any effective treatment needs to ad-

dress multiple domains of thought and behavior.

References

Alcoholics Anonymous. (n.d.). The twelve steps. https://www.aa.org/the-twelve-steps

Erickson, M. (2020, March 11). Alcoholics Anonymous most effective path to alcohol abstinence.

Stanford Medicine: News Center. https://med.stanford.edu/news/all-news/2020/

03/alcoholics-anonymous-most-effective-path-to-alcohol-abstinence.html

Fujimoto, K., & Valente, T. W. (2013). Alcohol peer influence of participating in organized

school activities: A network approach. Health Psychology, 32(10), 1084–1092. https://

doi.org/10.1037/a0029466

Genetic Science Learning Center. (2013, August 30). Mouse party. https://learn.genetics.

utah.edu/content/addiction/mouse/

Substance Abuse and Mental Health Services Administration. (2020, September). Key sub-

stance use and mental health indicators in the United States: results from the 2019 national survey

on drug use and health (PEP20-07-01-001). U.S. Department of Health and Human

Services. https://www.samhsa.gov/data/sites/default/files/reports/rpt29393/

2019NSDUHFFRPDFWHTML/2019NSDUHFFR1PDFW090120.pdf

Kareken, D. A., Liang, T., Wetherill, L., Dzemidzic, M., Bragulat, V., Cox, C., Talavage,

T., O’Connor, S. J., & Foroud, T. (2010). A polymorphism in GABRA2 is as-

sociated with the medial frontal response to alcohol cues in an fMRI study.

Alcoholism: Clinical and Experimental Research, 34(12), 2169–2178. https://doi.org/

10.1111/j.1530-0277.2010.01293.x

Lukens, E. (2015). Psychoeducation. Oxford Bibliographies Online Datasets. https://doi.org/

10.1093/obo/9780195389678-0224

Modir, S., Alfaro, B., Casados, A., & Ruiz, S. (2020, August 4). Understanding the role of

cultural stigma on seeking mental health services. https://health.choc.org/understanding-the-

role-of-cultural-stigma-on-seeking-mental-health-services/

Myers, D., & DeWall, N. (2018). Exploring psychology (11th ed.). Worth Publishers.

National Center for Statistics and Analysis. (2021, October). State traffic data: 2019

data (Traffic Safety Facts. Report No. DOT HS 813 183). National Highway

Traffic Safety Administration. https://crashstats.nhtsa.dot.gov/Api/Public/

ViewPublication/813183

96  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

Author Note

We have no known conflict of interest to disclose.

Correspondence concerning this article should be addressed to

Rachelle Tannenbaum, Anne Arundel Community College, 101

College Parkway, Arnold, MD 21012. Email: retannenbaum@

aacc.edu 

National Institute on Alcohol Abuse and Alcoholism. (2021, June). Alcohol facts and statis-

tics. U.S. Department of Health and Human Services. https://www.niaaa.nih.gov/

publications/brochures-and-fact-sheets/alcohol-facts-and-statistics

Smith, M., Segal, J., & Robinson, L. (2021, October). Dual diagnosis: Substance abuse and mental health.

HelpGuide.org. https://www.helpguide.org/articles/addictions/substance-abuse-

and-mental-health.htm

Spirito, A., Sindelar-Manning, H., Colby, S. M., Barnett, N. P., Lewander, W., Rohsenow,

D. J., & Monti, P. M. (2011). Individual and family motivational interventions

for alcohol-positive adolescents treated in an emergency department. Archives

of Pediatrics & Adolescent Medicine, 165(3), 269-–274. https://doi.org/10.1001/

archpediatrics.2010.296

Walker, D. D., Walton, T. O., Neighbors, C., Kaysen, D., Mbilinyi, L., Darnell, J.,

Rodriguez, L., & Roffman, R. A. (2017). Randomized trial of motivational inter-

viewing plus feedback for soldiers with untreated alcohol abuse. Journal of Consulting

and Clinical Psychology, 85(2), 99–110. https://doi.org/10.1037/ccp0000148

Witkiewitz, K., Litten, R. Z., & Leggio, L. (2019). Advances in the science and treatment

of alcohol use disorder. Science Advances, 5(9), Article No. eaax4043. https://doi.

org/10.1126/sciadv.aax4043

Multispectral Analyses on Drone-Captured Images for Submerged Aquatic Vegetation (SAV) Monitoring  97

Alexander Thompson

Multispectral
Analyses on Drone-
Captured Images
for Submerged
Aquatic Vegetation
(SAV) Monitoring
Abstract

The important ecological role of submerged aquatic vegetation

(SAV) makes its year-to-year distribution of significant interest

to environmental monitoring organizations. The use of drones

to perform the task of SAV monitoring through multispectral

analyses is a promising tool to achieve a methodology that is

automatable, repeatable, time efficient, and accessible. A prelim-

inary trial was conducted at Eagle Cove near Gibson Island on

the Magothy River where a DJI Phantom 4 Drone with a Sentera

special purpose camera captured multispectral digital images

with five spectral bands. These were used to apply and compare

four vegetation indices: Normalized Difference Vegetation

Index (NDVI), Green Normalized Difference Vegetation Index

(GNDVI), Modified Normalized Difference Vegetation Index

(mNDVI), and Normalized Difference Aquatic Vegetation Index

(NDAVI). Analyses was done using the geographic information

systems program known as ArcGIS Pro. The images generated by

each index show some measure of successful identification of SAV,

though there are many false-positives due to a variety of factors.

The effectiveness of each index in our images was estimated by

comparing the amount of pixels identified as SAV in the area of

Key words

drones

SAV

remote sensing

multispectral analysis

Faculty Mentor

Tim Tumelty
Instructional Specialist,
Drone Center

98  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

observed SAV growth and outside of this area. The most effective

index was indicated to be mNDVI. This methodology will contin-

ue to be developed at AACC, and future work will aim to improve

upon this process and to make calculations of SAV acreage and

density that can be compared to ground-truthed observations.

Introduction

The abundance of submerged aquatic vegetation (SAV) is a critical

metric involved in the assessment and monitoring of the biological

health of local waterways. SAV is defined as a rooted aquatic plant

that grows completely underwater, and can be found throughout

the Chesapeake Bay and its tributary rivers. SAV plays an im-

portant role in stabilizing water quality by providing oxygen to

the water column, filtering sediment, absorbing excess nutrients,

buffering pH, and neutralizing acidic conditions. It also protects

shorelines from erosion, provides food and habitat for wildlife, and

sequesters carbon dioxide (“Chesapeake Bay SAV Watchers”).

Therefore, efforts to preserve and propagate SAV are critical, and

the monitoring of SAV is of great interest to many organizations

that work to conserve our environment.

The challenge of mapping SAV from year to year has been

approached with a variety of methods, from traditional surveys

using boats to remote sensing using airplanes and satellites. The

Virginia Institute of Marine Science (VIMS) conducts annu-

al surveys of the entire Chesapeake Bay, its tributaries, and the

Delmarva Coastal Bays by using aerial photography to collect

multispectral digital images taken from an aircraft at an altitude

of approximately 13,200ft (“Monitoring Methods for SAV”). The

aircraft-based methodology used by VIMS is useful because it cap-

tures a large amount of data over vast distances, but it is not always

accurate and often needs to be verified through ground-truthing

at the local level. The use of drones to map SAV may allow for

more detailed and more reliable surveys to be performed on a

Multispectral Analyses on Drone-Captured Images for Submerged Aquatic Vegetation (SAV) Monitoring  99

smaller scale. Drones provide a ground level local observation sim-

ilar to kayak surveys combined with an overhead sensor similar to

crewed aircraft. Drones provide an intermediate tool in terms of

scale and detail (Figure 1), while allowing for a methodology that

is automatable, easily repeatable, and time efficient. Through the

use of computer software, drones are able to follow a programmed

route over a study area. A key benefit of using an automated flight

program and image capturing process is that it is easy to keep a

consistent flight path when monitoring the same site from year to

year. Another benefit of drone-based methodology is its accessi-

bility to a wide variety of environmental organizations, many of

which are interested in surveying only a particular river or reach

in great detail.

Drones can capture detailed photographs in which SAV is

visible under the surface of the water, though it is often not enough

to rely simply on the viewing of images to accurately find SAV and

distinguish it from its surroundings. Multispectral analysis offers a

more rigorous methodology for processing the data that is captured

Figure 1

Illustration of the varying scales
of coverage and the levels of detail
observed from boats, drones, and
aircraft. Coverage increases from
left to right, while detail decreases.

Altitudes and distances not to scale.

100  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

by the drone. The Drone Center at Anne Arundel Community

College (AACC), in coordination with the Environmental Center

and the Geography department, has begun the development of a

drone-based methodology to survey SAV using multispectral anal-

ysis. We collected data in the form of digital images captured from

a drone on the Magothy River at Eagle Cove near Gibson Island,

where SAV was seen to be present. Five bands of reflectance: red

(R), green (G), blue (B), red edge (RE), and near-infrared (NIR)

were captured and used to calculate vegetation indices, which are

combinations of reflectance in two or more bands designed to

highlight a particular property of vegetation.

The presence of chlorophyll and photosynthesis causes light

absorption in the red region of the electromagnetic spectrum, and

consequently vegetation has a very low red reflectance. Due to

internal cellular structure, vegetation also has very high reflec-

tance in the NIR region (Rowan and Kalacska). Vegetation indices

such as the Normalized Difference Vegetation Index (NDVI) take

advantage of this by using the difference between NIR and red

reflectance to highlight vegetation. Another index, the Green

Normalized Difference Vegetation Index (GNDVI) uses green re-

flectance rather than red to estimate photosynthetic activity. These

indices are often used to gauge the health of crops and forests, but

they can also be used to identify and map vegetation, including

SAV. One study has shown that NDVI can be suitable for de-

tecting SAV, with the condition that in deeper waters the depth

is considered (Jung et al.). However, a drawback to using NDVI

and GNDVI in under-water settings is that NIR frequencies have

a high degree of absorption by the water column (Rowan and

Kalacska). Because of this factor, we also considered other indices

that are designed with the aquatic medium in mind. The Modified

Normalized Difference Vegetation Index (mNDVI) addresses the

issue of NIR attenuation by modifying NDVI to use the RE band

instead of NIR (Brooks et al.). Another index that has been shown

Multispectral Analyses on Drone-Captured Images for Submerged Aquatic Vegetation (SAV) Monitoring  101

to produce good results in under-water studies is the Normalized

Difference Aquatic Vegetation Index (NDAVI) which uses blue re-

flectance (Rowan and Kalacska).

At Eagle Cove a series of 47 overlapping images was taken,

which allows for the use of photogrammetric analysis methods.

However, for the purposes of this preliminary trial we limited

ourselves to selecting only one set of red, green, blue (RGB) and

corresponding NIR/RE photos with which to work. The objec-

tive of this project was to begin the establishment of a process for

image collection and analysis that can be used by AACC or other

organizations in the future, and to identify a vegetation index that

is effective at finding SAV. This project serves as the preliminary

work for a future study that will be the basis of a 2022 Department

of Natural Resources grant proposal.

Methodology

The drone images were captured on September 9, 2021 at Eagle

Cove, located on the Magothy River at approximately 39° 05’ 14”

N, 76° 25’30” W. A DJI Phantom 4 drone was mounted with a

Sentera 5-band multispectral double 4k camera. The peak wave-

length and widths that define each band are given in Table 1.

Images were captured using the software Pix4Dcapture to cre-

ate a pre-programmed flight route over the study area, flying at

a programed height of 120 meters. Pix4Dcapture creates a flight

path within a user-defined area along which the drone automat-

ically captures overlapping photos (Figure 2). Photos were taken

looking straight down at an angle of 90° to the horizon, with a

front overlap of 80% and side overlap of 80%. For purposes of

documentation, water quality parameters were measured at Eagle

Cove during the time of our flight. A Yellow Springs Instrument

(YSI) was used to measure standard water quality parameters, in

addition to water clarity being measured with a Secchi disk and

turbidity with a field kit.

102  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

Band	 Peak Wavelength	 Width

Blue	 446nm	 60nm

Green	 548nm	 45nm

Red	 650nm	 70nm

Red Edge	 720nm	 40nm

Near-Infrared	 840nm	 20nm

The collected images were analyzed using ArcGIS pro. One

single RGB and matching NIR/RE image were selected for anal-

ysis. Sentera cameras have two different lenses that are spaced

Table 1

Spectral band specifications
for the Sentera camera.

Figure 2

Flight path in Pix4D. Camera
icons (black boxes) show the
location of each photograph.

Multispectral Analyses on Drone-Captured Images for Submerged Aquatic Vegetation (SAV) Monitoring  103

approximately one inch apart, one for RGB and one for NIR/RE.

This created the need for the images to be aligned with each other

using anchor points before generating a single composite image

that includes all five spectral bands. This composite image was

used to calculate a variety of different vegetation indices.

Data

The drone-collected data is in the form of RGB and NIR/RE dig-

ital images (Figure 3) and the composite image that combines the

spectral bands from both into one single image.

The water clarity at Eagle Cove was measured to be 0.6m

with a turbidity of 10.75 nephelometric turbidity units (NTUs).

The parameters measured with the YSI at both surface and bot-

tom depths are shown in Table 2.

	 Surface (0.2m)	 Bottom (1.1m)

Temperature (°C)	 23.2	 22.5

Dissolved Oxygen (mg/L)	 8.75	 7.64

Salinity (ppt)	 5.79	 5.75

pH	 8.45	 8.64

Figure 3

RGB and NIR/RE images taken
from the drone at Eagle Cove.

Table 2

YSI data from Eagle Cove.

RGB NIR/RE

104  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

Results

Several vegetation indices were calculated from the composite im-

age using ArcGIS Pro. Four that appeared to be potentially useful,

NDVI, GNDVI, mNDVI, and NDAVI, were selected for further

analysis. The images generated from the application of these in-

dices are shown in Figure 4, and the formulas for each index are

given in Table 3.

Index	F ormula

NDVI	 (NIR - R)/(NIR + R)

GNDVI	 (NIR - G)/(NIR + G)

mNDVI	 (RE - R)/(RE + R)

NDAVI	 (NIR - B)/(NIR + B)

Figure 4

Resulting images
from the application
of vegetation indices.

Table 3

Vegetation indices and
corresponding formulas.

NDVI

mNDVI

GNDVI

NDAVI

Multispectral Analyses on Drone-Captured Images for Submerged Aquatic Vegetation (SAV) Monitoring  105

Each index converts the composite image into an image with

one single band, shown with a black to white color gradient. Each

pixel in the image is assigned a value between -1 and 1 based on

the index formula, with higher values displaying brighter and low-

er values displaying darker. Since these indices are designed to

highlight vegetation, the SAV as well as terrestrial plants are seen

to be highlighted against the dark water surface. Some parts of

manmade objects such as the boats are also highlighted. We would

like to remove the noise of terrestrial plants and manmade objects

to view only SAV against the water surface. For each image it is

therefore necessary to clip out a section that shows only the area

of the water where SAV might be found. This was done with the

image masking tool in ArcGIS Pro which allows a polygon to be

drawn and applied to multiple images to extract a section of each

image as its own layer. The mask that was used to clip out our

study area, referred to as the “full mask”, is shown in Figure 5.

The full mask was applied to each index-generated image. Each

extracted image was given a new color gradient of blue to yellow,

which makes the images easier to view. Two examples of the re-

sulting final images are shown in Figure 6.

Figure 5

Masks that were used to analyze
only a certain section of the
photograph, shown overlain with
the RGB image. The full mask
was used to examine a broad area
where one might look for SAV
and that excludes the dock, boats,
and land. The SAV mask was
used later in the analysis to look
at only the area where SAV was
known to be present.

Full Mask SAV Mask

106  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

mNDVI NDAVI

While these index-generated images succeed at highlighting

SAV, a problem with how they turned out is that they also con-

tain many highlighted pixels that are not actually representative

of SAV. A comparison of each index’s effectiveness in our images

was carried out by computing the number of pixels at each .01

step in the index from 1.0 to -1.0 for both the full mask and the

SAV mask. The mask that was used to analyze only the area of

SAV growth is shown in Figure 5, referred to as “SAV mask”. The

count of pixels at each step value identified as SAV in the SAV

mask was subtracted from that in the full mask to determine how

many pixels are not inside of the area where SAV is expected. The

assumption being that index returns close to positive 1 in the SAV

mask were pixels containing SAV and the corresponding pixels in

the count “outside SAV mask” were not SAV and would be con-

sidered a false positive. A limit of 85% success rate of bright pixels

in the SAV mask was chosen as a way to compare indexes.

To complete Table 4, a summation of all pixel’s values was

made at each step from +1 to -1 at a .01 step interval. This sum-

mation gave a total of pixels in all bins below the index value.

Figure 6

Extracted images from
mNDVI and NDAVI, shown
with a blue-yellow color gradient.

Multispectral Analyses on Drone-Captured Images for Submerged Aquatic Vegetation (SAV) Monitoring  107

Index	 Lower Limit 	 Pixel Count	 Pixel Count	 Percentage of Pixels
	 for SAV Pixels	 Inside SAV Mask	O utside SAV Mask	 Inside SAV Mask

mNDVI	 0.33	 166,987	 23,975	 85.6%

GNDVI	 -0.31	 116,558	 17,750	 84.8%

NDVI	 -0.17	 89,342	 13,989	 84.3%

NADVI	 -0.09	 19,381	 2,529	 87.0%

A ratio of Pixels Count Inside SAV Mask/Pixel Count

Outside SAV Mask was then determined with 85% being used as

the acceptable success rate. This value was chosen because above

85% there was a sharp increase in the number of pixels outside

the SAV mask for that index. The lower limit that yielded approxi-

mately 85% of identified pixels in the expected area corresponded

to a pixel count inside the SAV mask area. The pixel counts inside

SAV mask in Table 4 indicate the relative effectiveness of each in-

dex at 85% success rate.

Conclusions

The study area at Eagle Cove was observed to have SAV growing

along the shoreline, as shown in Figure 7. The images generated

using vegetation indices appear to indicate the presence of SAV

along the shore, and in each case provide a more defined and visu-

ally identifiable picture of the precise area containing SAV when

compared to the RGB photo. The use of multispectral analyses

provides confirmation that what is seen as a dark area under the

surface is in fact vegetation showing high NIR reflectance. One

notable aspect of the study area was a patch of SAV broaching

the water surface (Figure 7). This area appears very bright when

any index is applied. These images may be used in future study to

compare the spectral profile of SAV that is at the water surface

Table 4

Counts of pixels identified as
SAV and corresponding lower
limits for each index.

108  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

with that of SAV that is below the surface.

 A noticeable problem with all four final images is the area

of high return in the deeper part of the water which appears as

a sparse cloud of highlighted points (Figure 8). This is unlikely to

be SAV. The exact source of this error is not known. It could be

due to a variety of factors including reflectance problems, arti-

facts of image manipulation, or organic matter suspended in the

water column. Based on knowledge of how SAV grows along the

shoreline and how far from the shore it typically grows and at what

depth, an educated guess could be made as to what highlighted

areas are a result of this “noise” and what areas are SAV. An im-

portant challenge of future work will be to reduce the prominence

of these errors. Another consideration of future work could be

how to separate SAV from algae and other types of phytoplankton

that are spectrally similar.

Among the four indices that were tested, mNDVI is shown

to be the most effective based on the analysis method outlined in

the results section. It identified the highest number of pixels in

the SAV Mask within the success range used in the study. GNDVI

was the second most effective index but yielded 30% less pixels in

the SAV Mask than mNDVI. NDAVI stood out as having an ex-

tremely low count of pixels in the SAV mask, with 88% less than

mNDVI. When visually comparing mNDVI and NDAVI (Figure

Figure 7

Areas of observed SAV growth at Eagle Cove are
shown circled in black. A patch of SAV adjacent to
the dock was seen to be broaching the water surface,
circled in red.

Figure 8

An area of higher return (circled
in red) that is not SAV is present
in all four indexes.

Multispectral Analyses on Drone-Captured Images for Submerged Aquatic Vegetation (SAV) Monitoring  109

6), it is apparent that NDAVI has a higher prominence of noise

that is harder to separate from what is really SAV. These state-

ments of effectiveness apply only to these particular images, and

not the viability of these indices in every case. There are many

factors that can be adjusted in future trials to maximize the appli-

cation of these indices, and thus produce more accurate images

of SAV presence. These images, however, provide a useful prelim-

inary trial for identifying what went well in this process, learning

what needs to be improved on, and for providing a sense of what

vegetation index may be the most worthwhile to pursue in future

trials.

It is important to note that several environmental conditions

determine the ideal time frame for the use of a drone to photo-

graph SAV. The most important factor is the angle of sunlight at

the time of flight. The sun being directly overhead allows for the

least amount of light scattering by the water and allows light to

penetrate deeper into the water column (Rowan and Kalascka).

Another factor of importance is the tide. A lower tide will provide

less of an obstacle to the camera when detecting submerged grass-

es. Flights should be conducted during the lowest tide possible,

and should be avoided during the highest tides. Additionally, water

turbidity, the clarity of the water as affected by suspended parti-

cles, in the study area is also a factor. Data collection during surges

in turbidity, such as up to 48 hours after heavy rainfall, should be

avoided. As it may not be possible to achieve ideal conditions in

each of these categories on any particular day, drone operators

should seek the best possible balance of all factors when flying

for data collection. Recording water quality parameters for each

flight may help to understand the distribution of SAV in the area,

as well as how images from the drone are affected by water clarity.

A noteworthy challenge of photogrammetric analysis over water

surfaces is the lack of key points that can be matched between im-

ages due to the high uniformity and reflectiveness of water. Pix4D

110  THE ANNE ARUNDEL COMMUNITY COLLEGE JOURNAL OF EMERGING SCHOLARSHIP

recommends having at least 30% land area in each image when

completing photogrammetric analysis over water, (“Is it Possible to

Generate the Orthomosaic of Water Surfaces?”).

Our future work will continue to determine a process by

which drone-captured multispectral images can be reliably

analyzed by ArcGIS Pro to yield an accurate count of SAV pixels

and their corresponding acreage and density. An aim of future

study should be to make acreage and density calculations and to

compare the results to ground-based traditional surveys of the

same site.

Acknowledgements

Thank you to Dr. Brad Austin for guidance and assistance using

ArcGIS Pro, to Dr. Tammy Domanski for obtaining water quality

data, and to the Magothy River Association for assistance with ac-

cess to Eagle Cove and for all the work that they do to protect SAV.

Works Cited

Brooks, Colin N., et al. “Multiscale Collection and Analysis of Submerged Aquatic

Vegetation Spectral Profiles for Eurasian Watermilfoil Detection.” Journal of Applied

Remote Sensing, vol. 13, no. 3, 27 Aug 2019. SPIE, https://doi.org/10.1117/1.JRS.

13.037501.

“Chesapeake Bay SAV Watchers.” Chesapeake Monitoring Cooperative, 2021, https://www.

chesapeakemonitoringcoop.org/chesapeake-bay-sav-watchers/.

Cho, Hyun Jung, et al. “Test of Multi-spectral Vegetation Index for Floating and Canopy-

forming Submerged Vegetation.” International Journal of Environmental Research and

Public Health, vol. 5, no. 5, 2008, pp. 477-483. MDPI, https://doi.org/10.3390/

ijerph5050477.

“Is it Possible to Generate the Orthomosaic of Water Surfaces?” Pix4D, 2021, https://

support.pix4d.com/hc/en-us/articles/202558999-Is-it-possible-to-generate-

the-orthomosaic-of-water-surfaces.

“Monitoring Methods for SAV.” Virginia Institute of Marine Science, 2022, https://www.vims.

edu/research/units/programs/sav/methods/index.php.

Rowan, Gillian & Margaret Kalacska. “A Review of Remote Sensing of Submerged

Aquatic Vegetation for Non-Specialists.” Remote Sensing, vol. 13, no. 4, 9 Feb 2021.

MDPI, https://doi.org/10.3390/rs13040623.

